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Summary. This supplementary material contains the proofs to all results in the main paper Au-
ddy et al. [2024]. We restate the results in their respective sections and provide the corresponding
proofs.

1. Introduction

The rest of the paper is organized as follows. In Section 2, we provide the background and
formulate our problem in detail. Section 3 presents the minimax rate of excess risk for our
problem across various specific cases, as well as the most general case. Section 4 introduces
our kernel based classifier, derives its excess risk bounds, and states the minimax lower
bound. Section 5 describes the data-driven adaptive procedure for bandwidth and weight
selection. The proofs of all results are given in Section 6.

2. Problem Formulation

In this section, we outline the general framework for federated transfer learning under
privacy constraints. Our dataset is distributed across m + 1 servers, indexed by the set
{0, 1, . . . ,m}. The dataset is categorized as target and source. On server 0 (also called the
target server), we have n0 i.i.d. samples from the distribution P0, while on server j (the
source servers) for j ∈ 1, . . . ,m, we have nj i.i.d. samples from distribution Pj . All of the
probability measures {Pj}mj=0 are defined on the measurable space (Z,Z ).

Let Z(0) = {Z(0)
i }n0

i=1 denote the n0 realizations from P0 on the target server. Let us
denote by Z(j) = {Z(j)

i }nj

i=1 the nj realizations from Pj on the jth server for j = 1, . . . ,m.
These servers serve as the source data, and our goal is to learn the model for our target
distribution P0.

For each source server i.e j = 1, . . . ,m, we send a (randomized) transcript T̃ (j) based
on Z(j) to the target server 0, where the law of the transcript is given by a distribu-
tion conditional on Z(j), P(·|Z(j)), on a measurable space (T ,T ). For j = 1, . . . ,m the
transcript T̃ (j) has to satisfy a (εj , δj)-differential privacy constraint.



2 Auddy, Cai, and Chakraborty

Definition 2.1. The transcript T̃ (j) is (εj , δj)-differentially private if for all A ∈ A
and z, z′ differing in one individual datum, it holds that

P
(
T̃ (j) ∈ A |Z(j) = z

)
≤ eεjP

(
T̃ (j) ∈ A |Z(j) = z′

)
+ δj .

The target server can look at the private transcripts {T̃ (j)}mj=1 and the target data Z(0)

while constructing the final private transcript T̃ . Hence T̃ satisfies (ε0, δ0)-interactive
differential privacy constraint, which is defined as follows:

Definition 2.2. The transcript T̃ is (ε0, δ0)-differentially private if for all A ∈ A
and z, z′ differing in one individual datum and for all tj ∈ T for j = 1, . . . ,m, it holds
that

P
(
T̃ ∈ A |Z(0) = z, T̃ (j) = tj for 1 ≤ j ≤ m

)
≤ eε0P

(
T̃ ∈ A |Z(0) = z′, T̃ (j) = tj for 1 ≤ j ≤ m

)
+ δ0.

This privacy constraint can be understood as follows: if we condition on the outcome of
all other servers then the distribution of the final private transcript T̃ does not change
much if one of the datum on the target server is changed.

In transfer learning, our focus is on scenarios where multiple parties, such as hospitals,
possess heterogeneous data with differing underlying distributions. Employing distributed
protocols in such contexts ensures differential privacy while yielding outputs from each
participating party. Within this framework, transcripts generated by each source server
rely solely on its local data, with no exchange of information occurring between source
servers. Communication is solely between the source and target servers. Each of the source
server transmits its transcripts to the target server. The target server utilizing all the tran-
scripts (T̃ (1), . . . , T̃ (m)) from the other servers and target data Z(0), computes the final
private transcript T̃ . This scenario often arises when multiple trials involving a popula-
tion similar to that of the target server are conducted, yet individual locations, such as
hospitals, opt against consolidating their original data due to privacy apprehensions.

In the context of transfer learning for nonparametric classification our data looks like
a couple Z(j)

i := (X(j)
i , Y

(j)
i ), for i = 1, . . . , nj ; j = 1, . . . ,m for the source servers, and

Z
(0)
i := (X(0)

i , Y
(0)
i ), for i = 1, . . . , n0 for the target server. We assume that Z(j)

i takes
values in Z := [0, 1]d × {0, 1}. We regard X ∈ [0, 1]d as a vector of features corresponding
to an object and Y ∈ {0, 1} as a label indicating that the object belongs to one of
two classes. Our goal is to propose distributed DP protocols T̃ (j) for each server and
construct classifier f̂ : [0, 1]d → {0, 1} based on the final private transcript {T̃}. Unlike
the traditional federated learning framework, there’s no central server; alternatively, we
can consider the target server as acting in a central capacity.

We denote the vector of privacy budgets as (ε, δ) = {(εj , δj)}mj=0 and the class of
distributed DP classifiers f̂ by Mε,δ.

Next we denote

ηj(X(j)) := P(Y (j) = 1|X(j)) for the source servers j = 1, . . . ,m; and
η0(X(0)) := P(Y (0) = 1|X(0)) for the target server,
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as the (source and target) regression functions of Y on X. We denote the marginal dis-
tribution of X for the jth server, j = 0, . . . ,m as PX

j . Define the classification error of a
classifier f under the target distribution P0 as

R0(f) := P0(Y ̸= f(X))

The Bayes decision rule is a minimizer of the of the risk R0(f) which has the form f∗
0 (X) =

1{η0(X) ≥ 1/2}. The goal of transfer learning is to transfer the knowledge gained from
the source data together with the information in the target data to construct a classifier
which minimizes the excess risk on the target data

E0(f̂) = E[R0(f̂)] −R0(f∗
0 )

Under the posterior drift model we quantify the similarity between the regression
functions {ηj}mj=1 and η0 as follows:

Definition 2.3 (Relative Signal Exponent (RSE)). The class Γ(γ, Cγ) with rel-
ative signal exponent γ = (γ1, . . . , γm) ∈ Rm+ and constants Cγ = (C1, . . . , Cm) ∈ Rm+ , is
the set of distribution tuples (P0, P1, . . . , Pm) that satisfy for 1 ≤ j ≤ m

(a) sign
(
ηj(x) − 1

2
)

= sign
(
η0(x) − 1

2
)

for all 1 ≤ j ≤ m and all x ∈ [0, 1]d.

(b)
∣∣ηj(x) − 1

2
∣∣ ≥ Cj

∣∣η0(x) − 1
2
∣∣γj for some γj > 0, for all 1 ≤ j ≤ m and all x ∈ [0, 1]d.

In addition to the RSE assumption we also need to assume smoothness of η0 and charac-
terize it behavior near 1/2.

Definition 2.4 (Hölder Smoothness). The regression function η0 belongs to the
Hölder class of functions denoted by Σ(β, L) (0 < β ≤ 1) which is defined as the set of
functions satisfying:

|η0(x) − η0(x′)| ≤ L∥x− x′∥β for x, x′ ∈ [0, 1]d.

Definition 2.5 (Margin Assumption (MA)). The margin class M(α,Cα) with
α ≥ 0 and Cα > 0 is defined as the set of distributions P0 such that

PX
0 (0 ≤ |η0(X) − 1/2| ≤ t) ≤ Cαt

α for all t > 0.

Another definition is about marginal density of X, PX
j for j = 1, . . . ,m.

Definition 2.6 (Common Support and Strong Density Assumption (SD)).
We assume that PX

j for j = 0, . . . ,m have the identical support on a compact (cµ, rµ) reg-
ular set A ⊂ [0, 1]d and has a density gj w.r.t. the Lebesgue measure bounded away from
zero and infinity on A:

gmin ≤ gj(x) ≤ gmax for x ∈ A and gj(x) = 0 otherwise,

where c0, r0 > 0 and 0 < gmin < gmax < ∞ are fixed constants. We denote the set of
marginal distributions (PX

0 , . . . , PX
m ) which satisfy the above constraints as S(µ, cµ, rµ)

where µ = (gmin, gmax).
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Remark 2.1. In this paper we focus our attention to the case when the marginal
densities have regular support and are bounded from below and above on their support.
Moreover we assume that αβ ≤ d throughout the paper. This is because in the other
regime (αβ > d), there is no distribution PX

0 such that the regression function η0 crosses
1/2 in the interior of the support of PX

0 (Audibert and Tsybakov [2007]) and hence this
case only contains the trivial cases for classification.

We put all the definitions together to define the class of distributions we consider in
the posterior drift model as

Π(γ, Cγ , β, L, α, Cα, µ, cµ, rµ)
:= {(P0, P1, . . . , Pm) : (P0, P1, . . . , Pm) ∈ Γ(γ, Cγ), η0 ∈ Σ(β, L),

PX0 ∈ M(α,Cα), (PX
0 , PX

1 , . . . , PX
m ) ∈ S(µ, cµ, rµ)}

For the rest of the paper we will use the shorthand Π(α, β,γ, µ) or Π if there is no
confusion.

3. Main Results

In this section, we present the key findings of our paper, where we establish the minimax
rate of convergence for transfer learning under differential privacy constraints, specifically
addressing the nonparametric classification problem.We divide our results into two sub-
sections: Section 3.1 covers the homogeneous case, while Section 3.2 addresses the general
heterogeneous case.

3.1. Minimax Rates under Source Homogeneity
To derive meaningful and interpretable insights from our minimax rate, we first exam-
ine the scenario where the source servers are exchangeable in terms of the distributed
classification problem under transfer learning and privacy constraints. This homogeneous
scenario is characterized by equal sample sizes (nj = n), privacy parameters (εj = ε,
δj = δ) and transfer exponents (γj = γ) for all j = 1, . . . ,m.

Theorem 3.1. Suppose nj = n, εj = ε, δj = δ and γj = γ for all j = 1, . . . ,m and
assume that δ = o((nm)−1). Then the minimax rate for the excess risk satisfies

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π

E0(f̂) ≍
[
LN

{ (
n

1
2β+d

0 ∧ (n2
0ε

2
0)

1
2β+2d

)

+
(
(mn)

1
2βγ+d ∧ (mn2ε2)

1
2βγ+2d

)}−β(1+α)
∧ 1
]

for a sequence LN of order at most (log((δ ∧ δ0)−1))
β(1+α)

2β(γ∧1)+d .

In order to further our understanding about interplay between the transfer exponent
γ and privacy parameters we restrict our attention to the case where the target server
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has same privacy budget, i.e., ε0 = ε, δ0 = δ and the number of target samples is be-
tween n and mn. Other sample size regimes can be described similarly. As is clear from
Theorem 3.1, the minimax rate of decay for the excess risk is given in this case by:

E0(f̂) ≍
[
LN

{(
n

− β(1+α)
2β+d

0 ∨ (n2
0ε

2)− β(1+α)
2β+2d

)∧(
(mn)− β(1+α)

2βγ+d ∨ (mn2ε2)− β(1+α)
2βγ+2d

)}
∧ 1
]
.

(1)
We will refer to the four terms on the right hand side in (1) as the non-private target

rate (NPt), the private target rate (Pt), the non-private source rate (NPs), and the private
source rate (Ps) respectively. Depending on the value of the common privacy parameter
ε and the transfer exponent γ, the overall rate will be determined by one of these four
rates, as demonstrated by the following table. Corollary 3.2 formally states the results of
Table 1 along with the endpoints of the various transfer and privacy regimes.

Table 1. Minimax rate of excess risk at different transfer and privacy regimes. See Corollary 3.2.

Transfer
Privacy

ε ∈ (0, ε(1)] ε ∈ (ε(1), ε(2)] ε ∈ (ε(2), ε(3)] ε ∈ (ε(3), 1]

γ ∈ (0, 1]

1

{
Pt if ε ≤ ε(11)

Ps if ε > ε(11) NPs

γ ∈ (1, γ(∗)] {
Ps if ε ≤ ε(11)

Pt if ε > ε(11)

{
NPt if ε ≤ ε(21)

Ps if ε > ε(21) NPs

γ ∈ (γ(∗), ∞) NPt

Corollary 3.2. Suppose nj = n, γj = γ ∀ 1 ≤ j ≤ m, n ≤ n0 ≤ mn, and equal
privacy budget εj = ε, δj = δ ∀ 0 ≤ j ≤ m . Further assume that δ = o((mn)−1). Then
the minimax rate for the excess risk are as given in Table 1 with the various regimes
characterized by the following endpoints:

(a) γ(∗) = 1
2β

[
(2β+d) logmn

logn0
− d

]
.

(b) ε(1) = (
√
mn)−1 ∧ n−1

0 ; ε(2) = n
− β

2β+d

0 ; ε(3) =
(
md/2n−βγ

) 1
2βγ+d .

(c) ε(11) =


[
(
√
mn)β+dn

−(βγ+d)
0

] 1
β(γ−1) if γ ̸= 1,

ε(1) if γ = 1, n0 ≤
√
mn2,

ε(2) if γ = 1, n0 >
√
mn2.

(d) ε(21) = (
√
mn)−1n

βγ+d
β+d

0 .

In the rest of this subsection, we describe another specialized setting where we allow
one of the source servers to be public. To demonstrate the effect of publicly available data,
we take m = 2 sources, with one private and one public source server. The minimax rate
for excess risk is then given by the following corollary:
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Corollary 3.3. Suppose that γ1 = γ2 = γ, ε1 = ∞, ε0 = ε2 = ε and n2 > n
2βγ+d
2β+d

0 ,
δ0 ∨ δ2 = o(n−1

2 ). Then the minimax rate for the excess risk satisfies the following.

(a) If n1 > n2, inf
f̂∈M(ε,δ) sup(P0,...,Pm)∈Π E0(f̂) ≍ n

− β(1+α)
2βγ+d

1 .

(b) If n
2βγ+d
2β+d

0 ≤ n1 ≤ n2, then

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π

E0(f̂) ≍


LNn

− β(1+α)
2βγ+d

1 if ε ≤ n−1
2 n

βγ+d
2βγ+d

1

LN (n2
2ε

2)− β(1+α)
2βγ+2d if n−1

2 n
βγ+d

2βγ+d

1 < ε ≤ LNn
− βγ

2βγ+d

2

LNn
− β(1+α)

2βγ+d

2 if n
− βγ+d

2βγ+d

2 < ε ≤ 1.

(c) If n1 ≤ n
2βγ+d
2β+d

0 ≤ n2, then

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π

E0(f̂)

≍


LNn

− β(1+α)
2βγ+d

1 if ε ≤ ñ−β[
LN

{(
n

1
2β+d

0 ∧ (n2
0ε

2)
1

2β+2d

)
+
(
n

1
2βγ+d

2 ∧ (n2
2ε

2)
1

2βγ+2d

)}−β(1+α)
∧ 1
]

otherwise,

where ñ = n
1

2β+d

0 ∧n
γ

2βγ+d

2 . Here LN is a sequence of order at most (log((δ0∧δ2)−1))
β(1+α)

2β(γ∧1)+d .

3.2. Minimax Rates in General Setting
We now turn our attention to the general case where the sample sizes nj , transfer expo-
nents γj , privacy parameters (εj , δj) are all allowed to vary for 0 ≤ j ≤ m. Our main
result, captured in Theorem 3.4, quantifies the rate. The homogeneous case described
earlier can be thought of as a special case of this vastly more general setting.

Theorem 3.4. Let r ∈ R+ be the solution to the following equation:

(n0 ∧ n2
0ε

2
0r
d)r2β+d +

m∑
j=1

(nj ∧ n2
jε

2
jr
d)r2βγj+d = 1 (2)

The minimax rate for excess risk is given by

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π(α,β,γ,µ)

E0(f̂) ≍
(
LNr

β(1+α) ∧ 1
)
. (3)

whenever
∑
j njδj → 0, for a sequence LN of order at most (− log (δmin))

β(1+α)
2βγmin+d .
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4. Minimax Optimal Classification Procedure

This section has two goals, divided respectively into the corresponding subsections. In
the first subsection we derive a nonparametric classifier for the target population, that
suitably utilizes information from the sources while satisfying privacy requirements for
each server. In the second subsection we prove a minimax lower bound showing that our
classifier is minimax rate optimal in the distributed private transfer learning context.

4.1. Classifier
We now describe a classifier for transfer learning with distributed privacy. Our method
has three main steps. First, we use a kernel estimator to estimate (ηj(x) − 1

2)g(x) for
j = 0, 1, . . . ,m. Second, then use a convex combination of these estimators, where the
weights are designed to borrow strength from the source servers under the transfer learning
setup. The third step is to add a Gaussian noise to the weighted kernel estimator to satisfy
privacy requirements. Our classifier is given by the sign of the noise perturbed weighted
estimator. See Section 4 of Auddy et al. [2024] for details.

Proposition 4.1. For any h ∈ [0, 1] the transcripts {T (j)
h (x0) + ξ̃

(j)
h (x0) : 0 ≤

j ≤ m} described above satisfies (εj , δj) differential privacy distributed across servers
j ∈ {0, 1 . . . ,m}.

The optimal bandwidth choice hopt is given by the solution to (2). To account for the
additional δ factor for approximate privacy, we now define hopt,δ which is the solution to:

(n0 ∧ n2
0ε

2
0r
d)r2β+d +

m∑
j=1

(nj ∧ n2
jε

2
jr
d)r2βγj+d = log

( 2
δmin

)
(4)

Finally our classifier is given by

f̂(x0) := 1(T̃hopt,δ
(x0) ≥ 0) (5)

where hopt,δ is the solution to (4). The following theorem provides an upper bound for the
excess risk of this classifier.

Theorem 4.2. Let r be the solution to (2). Let f̂ be the classifier defined in (5)
based on the weighted kernel estimator in Section 4 of Auddy et al. [2024]. Then,

sup
(P0,...,Pm)∈Π(α,β,γ,µ)

E0(f̂) ≤ C∗r
β(1+α)

(
log
( 1
δmin

)) β(1+α)
2βγmin+d

where C∗ is a constant depending on L, d, α, β, γj, while γmin = min{1, γ1, . . . , γm} and
δmin = min{δ0, . . . , δm}.

4.2. Minimax Lower Bounds
The above theorem bounds the error rate of our kernel based classifier. Alongside the
upper bound above, in this subsection we derive the minimax lower bound on the excess
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risk, to establish that our kernel based classifier is minimax optimal upto logarithmic
terms.

We introduce a general data processing inequality which extends the findings pre-
sented in Cai et al. [2023a]. This new result provides a bound on the total variation
(TV) distance between the push forward measures of the transcripts PT̃σ and PT̃σ′ , utilizing
the TV distance between their underlying distributions. Such an inequality may be of
independent interest beyond the current setting due to its broader applicability.

Lemma 1. For any subset S ⊆ {0, . . . ,m}, the TV distance is bounded as follows:

TV
(
PT (0)

σ ,PT (0)

σ′

)
≤

√
2
√∑
j∈S

ε̄j (eε̄j − 1) +
∑
j∈Sc

njKL(Pj,σ, Pj,σ′) + 4
∑
j∈S

eε̄jnjδjρj , (6)

where ε̄j = 6njεjρj and ρj = TV(Pj,σ, Pj,σ′).

The following theorem then establishes the fundamental cost of privacy for the non-
parametric classification problem in the distributed privacy setting.

Theorem 4.3. Suppose δj’s are such that
∑
j njδj = o(1), then there exists a c > 0

not depending on nj for j = 0, . . . ,m such that

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π

E0(f̂) ≥ crβ(1+α)

where r is the solution to (2).

5. Data-driven Adaptive Classifier

In practice we do not know the smoothness and transfer exponent parameters of the
unknown regression function. Choosing the correct bandwidth h thus becomes nontrivial.
We will use an estimator based on the Lepski method to choose h from a grid of possible
values. To choose the best candidate bandwidth, we define a grid of possible choices for h
as:

H = {2−j : j = 0, 1, . . . , (log n∗)/d}, where n∗ =
m∑
j=0

nj ∧ n2
jε

2
j .

Let ∆m = {w : wi ∈ [0, 1],
∑m
i=0 wi = 1} denote the m-dimensional simplex. For a weight

vector w = (w0, w1, . . . , wm) ∈ ∆m we define

T̃ (x0, h, w) :=
m∑
j=0

wjT
(j)
h (x0) +

m∑
j=0

wj

√
2cK log(2|H|/δj)|H|

njεjhd
ξ(j)(x0) for h,w ∈ [0, 1] (7)

where T (j)
h (·) is as defined in Section 4 of Auddy et al. [2024] and ξ(j)(·) are mean zero

Gaussian processes with covariance kernel K(·/h).
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5.1. Adaptation under Source Homogeneity
In this subsection we consider the sources to have transfer homogeneity, i.e., every source
has identical transfer exponent γj = γ for j = 1, . . . ,m. It is then intuitive to weigh the
estimators T (j)

h and the noise ξ(j) with the weights proportional to nj ∧ n2
jε

2
jh

d for the
sources. Then the adaptive choice of h in the transfer homogeneous setting is given by

h0 =

min {h ∈ H : ρ̂0(h) > 4.5 log(2n∗|H|)} if max
h∈H

ρ̂0(h) > 4.5 log(2n∗|H|)

argmaxhρ̂0(h) otherwise.

Define

w∗
0 = argmaxw∈W(h0)

(T̃ (x0, h0, w))2

v0(h0, w) .

The adaptive classifier is now defined as

f̂0(x) := 1(T̃ (x, h0, w
∗
0) > 0). (8)

The following theorem states the excess risk of the adaptive classifier in terms of the
regression function parameter α, β, the transfer exponent γ and the privacy constraints.

Theorem 5.1. Let r be the solution to (2) with γj = γ for j = 1, . . . ,m. Let f̂0 be
the data adaptive classifier defined in (8). Then,

sup
(P0,...,Pm)∈Π(α,β,γ,µ)

E0(f̂0) ≤ C ′
∗r
β(1+α)

[
(log(n∗|H|) log (2|H|/δmin))

β(1+α)
2β(1∧γ)+d ∨ |H|

2β(1+α)
d

]

where C ′
∗ is a constant depending on m,L, d, α, β, γ, while δmin = min{δ0, . . . , δm}.

5.2. General Adaptation for Multiple Sources
We now shift to the general setting where we no longer constrain γ1, . . . , γm to be all
equal. Note that for optimal estimation (as in Theorem 4.2), one requires knowledge of
potentially m many different parameters γ1, . . . , γm. The adaptation procedure therefore
requires optimizing over all possible weights in w ∈ ∆m. When m increases with n, the
adaptation to this growing number of parameters necessarily worsens the rate of decay for
the excess risk. We will not delve further into issue and focus instead on the case where
m is finite and does not increase with n.

Let us define the signal-to-noise ratio index ρ̂(h):

ρ̂(h) = max
w∈∆m

(T̃ (x0, h, w))2

v(h,w) ,

In this general setting, the adaptive choice of h is given by

h∗ =

min {h ∈ H : r̂(h) > C∗ log(n∗|H|(m+ 1))} if max
h∈H

ρ̂(h) > C∗ log(n∗|H|(m+ 1))

argmaxh ρ̂(h) otherwise.
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where C∗ = 2.25(m+ 1). Defining

w∗ = argmaxw∈∆m

(T̃ (x0, h∗, w))2

v(h∗, w) .

we obtain the adaptive classifier

f̂a(x) := 1(T̃ (x, h∗, w∗) > 0). (9)

The following theorem verifies the efficacy of the general adaptive procedure.

Theorem 5.2. Let r be the solution to (2). Let f̂a be the data adaptive classifier
defined in (9). Then,

sup
(P0,...,Pm)∈Π(α,β,γ,µ)

E0(f̂) ≤ C ′
∗r
β(1+α)

[
(log(n∗|H|) log (2|H|/δmin))

β(1+α)
2βγmin+d ∨ |H|

2β(1+α)
d

]

where C ′
∗ is a constant depending on m,L, d, α, β, γj, while γmin = min{1, γ1, . . . , γm} and

δmin = min{δ0, . . . , δm}.

An important special case of the above theorem is the server homogeneous case,
where sample sizes and the privacy parameters are the same for every server, i.e., nj = n,
εj = ε and δj = δ for j = 0, 1, . . . ,m. The following corollary bounds the excess risk of
the adaptive estimator for this special case.

Corollary 5.3. Let r be the solution to (2) with nj = n, εj = ε, δj = δ and γj = γ

for all j = 1, . . . ,m. Let f̂0 be the data adaptive classifier defined in (8). Then,

sup
(P0,...,Pm)∈Π(α,β,γ,µ)

E0(f̂0) ≤ C ′
∗

[
L

(ada)
N

{ (
n

1
2β+d

0 ∧ (n2
0ε

2
0)

1
2β+2d

)

+
(
(mn)

1
2βγ+d ∧ (mn2ε2)

1
2βγ+2d

)}−β(1+α)
∧ 1
]

where L(ada)
N is given by

[
(log(n∗|H|) log (2|H|/δ))

β(1+α)
2β(1∧γ)+d ∨ |H|

2β(1+α)
d

]
, and C ′

∗ is a con-
stant depending on m,L, d, α, β, γ.

6. Proofs

We divide this section into three subsections where the proofs for the main results, the
upper bound, the lower bound, and the adaptive estimator are respectively given.

6.1. Proofs of Results in Section 3
We first prove the theorems and corollaries in Section 3.
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Proof (Proof of Theorem 3.1). The proof follows from Theorem 3.4 by pre-
cisely deriving the value of r in the homogeneous setting. In particular, when nj = n,
γj = γ, εj = ε, and δj = δ for j = 1, . . . ,m, the solution r to the equation (2) satisfies

1
2 ≤ (n0r

2β+d ∧ n2
0ε

2
0r

2β+2d) ∨ (mnr2βγ+d ∧mn2ε2r2βγ+2d) ≤ 1.

In conjunction with the result from Theorem 3.4, the different parts of the min-max
inequality above finishes the proof of Theorem 3.1.

Proof (Proof of Corollary 3.2). To simplify notation we define

a1 := n
1

2β+d

0 , a2 := (n2
0ε

2)
1

2β+2d , a3 := (mn)
1

2βγ+d , and a4 := (mn2ε2)
1

2βγ+2d . (10)

By Theorem 3.1 we have that the minimax rate of excess risk in this case is given by

inf
f̂∈M(ε,δ)

sup
(P0,...,Pm)∈Π

E0(f̂) ≍ [LNa5 ∧ 1] where a5 := {(a1 ∧ a2) ∨ (a3 ∧ a4)}−β(1+α). (11)

Case 1: (γ ∈ (1, γ(∗)]) We first consider the regime where 1 ≤ γ ≤ γ(∗) for γ(∗) :=
1

2β

[
(2β+d) logmn

logn0
− d

]
, since this shows the most number of phase transitions. The proofs

for other regimes follow similarly. Note first that:

γ ≤ 1
2β

[(2β + d) logmn
log n0

− d

]
⇐⇒ (2βγ + d) log(n0) ≤ (2β + d) logmn

⇐⇒ a1 ≤ a3. (12)

The rest of the proof proceeds in sub-cases based on the range of ε.
Case a): (0 < ε ≤ ε(1)) Since ε < ε(1) := (

√
mn)−1 ∧n−1

0 , we have mn2ε2 ∨n2
0ε

2 ≤ 1 and
hence a2 ∨ a4 ≤ 1, and thus a5 ≥ 1. Thus E0(f̂) = 1 in this case by equation (11).
Case b): (ε(1) < ε ≤ ε(2)) Since ε < ε(2) := n

− β
2β+d

0 , we have

a2 ≥ a1 and a4 < a3.

Now a direct comparison yields that since γ > 1

ε ≤ ε(11) :=
[
(
√
mn)β+dn−βγ−d

0

] 1
β(γ−1) ⇐⇒ a4 > a2.

This means
{(a1 ∧ a2) ∨ (a3 ∧ a4)} = a4

when ε ≤ ε(11). Similarly {(a1 ∧ a2) ∨ (a3 ∧ a4)} = a2 when ε > ε(11). This finishes the
proof for case b).
Case c): (ε(2) < ε ≤ ε(3)) Comparing the expression we arrive at a1 < a2 and a3 ≥ a4 in
this case. It is left to compare a1 and a4. It can be checked that

ε ≤ ε(21) ⇐⇒ a1 > a4.
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Thus {(a1 ∧ a2) ∨ (a3 ∧ a4)} = a1 when ε ≤ ε(21), and {(a1 ∧ a2) ∨ (a3 ∧ a4)} = a4 when
ε > ε(21). This finishes the proof for case b).
Case d): (ε > ε(3)) In this case, we have a3 < a4. Since (a1 ∧ a2) ≤ a1 ≤ a3 by (12), we
find that

{(a1 ∧ a2) ∨ (a3 ∧ a4)} = a3.

This finishes the proof for case d). The proofs for other ranges of γ follow analogously and
are hence skipped.

Proof (Proof of Corollary 3.3). The proof follows from Theorem 3.4 by set-
ting m = 2 and ε1 = ∞.

Proof (Proof of Theorem 3.4). The proof follows by combining the conclu-
sions of Theorem 4.2 and Theorem 4.3.

6.2. Proofs of Results in Section 4
Proof (Proof of Proposition 4.1). We first show the RKHS norm bounds,

i.e., for T (j)
h and T

(j)′

h as defined in Section 4 of Auddy et al. [2024], we have

∥T (j)
h − T

(j)′
h ∥K

=

√√√√ 1
n2
Pj
h2d

[
1
2K(0) − 2

(
Y

(j)
1 − 1

2

)(
Y

(j)′

1 − 1
2

)
K

(
X

(j)
1 −X

(j)′

1
h

)]

≤
√
cK

njhd

for j = 0, 1, . . . ,m. The proof then follows using Corollary 3.5 of Hall et al. [2013].

Proof (Proof of Theorem 4.2). To get started, we state the following concen-
tration inequality on T

(j)
h , which holds for any fixed h ∈ [0, 1].

Lemma 2. For any t ∈ [0, cK2d−1) we have

P (|Th(x0) − E(Th(x0))| ≥ t) ≤ exp

− t2hd

Cup


m∑
j=0

u2
j

(
1
nj

+ 1
n2
jε

2
jh

d

)
+ max

0≤j≤m

uj
nj


−1 .

where Cup = (c2
K ∨ 1)[2d−2gmax + log(2/δmin)/4].

It follows from the definition of {T (j)
h : 0 ≤ j ≤ m} that for x0 ∈ Rd we have

ETh(x0) = 1
hd

∫ m∑
j=0

[
gj(x)uj

(
ηj(x) − 1

2

)]
K

(
x− x0

h

)
dx

= 1
hd

∫
x:∥x−x0∥∞≤h

m∑
j=0

[
gj(x)uj

(
ηj(x) − 1

2

)]
K

(
x− x0

h

)
dx.
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where the second inequality follows due to the support of K. Note that:

|ETh(x0)| =
m∑
j=0

uj
hd

∫
x:∥x−x0∥∞≤h

[
gj(x)

∣∣∣∣ηj(x) − 1
2

∣∣∣∣]K (
x− x0

h

)
dx

≤ cK
2hd

∫
x:∥u∥∞≤h

gj(x)dx ≤ cK2d−1. (13)

Suppose ηQ(x0) ≥ 1
2 +L(2h

√
d)β. This implies for any x ∈ Xh(x0) := {x : ∥x−x0∥∞ ≤

h}, we have by the Hölder condition that

ηQ(x0) ≥ 1
2+L(2h

√
d)β =⇒ ηQ(x) ≥ ηQ(x0)− sup

x∈Xh(x0)
L∥x−x0∥β ≥ 1

2 for all x ∈ Xh(x0).

By part 1 of the RSE assumption, and similarly arguing for x0 such that ηQ(x0) ≤
1
2 − L(2h

√
d)β, we have

η0(x0) ≥ 1
2 + L(2h

√
d)β =⇒ ηj(x) ≥ 1

2 for all x ∈ Xh(x0)

η0(x0) ≤ 1
2 − L(2h

√
d)β =⇒ ηj(x) ≤ 1

2 for all x ∈ Xh(x0).

On the other hand, it can be checked that Bx0(h/
√

2) ⊂ Xh(x0). Consequently for x0 ∈ Rd,
η0(x0) ≥ 1

2 + L(2h
√
d)β implies,

ETh(x0)

= 1
hd

∫
Xh(x0)

m∑
j=0

[
gj(x)uj

(
ηj(x) − 1

2

)]
K

(
x− x0

h

)
dx

≥ 1
hd

∫
Xh(x0)

g0(x)u0

(
η0(x) − 1

2

)
+

m∑
j=1

gj(x)uj
(
η0(x) − 1

2

)γj

K (
x− x0

h

)
dx

≥ 1
hd

 m∑
j=0

ujCj

(
η0(x0) − 1

2 − L(2h
√
d)β
)γj

∫
Bx0 (h/2)∩A

gj(x)K
(
x− x0

h

)
dx


≥ bK

hd

 m∑
j=0

ujCj

(
η0(x0) − 1

2 − L(2h
√
d)β
)γj

∫
Bx0 (h/2)∩A

gj(x)dx


≥ bKc0

2d

 m∑
j=0

ujCj

(
η0(x0) − 1

2 − L(2h
√
d)β
)γj

 . (14)

where we use the notation C0 = γ0 = 1. Here the three inequalities follow from (14), the
Hölder condition on η0, and the c0 regularity of PX

j for j = 0, . . . ,m respectively. The
rest of our proof follows the general principle laid out in Audibert and Tsybakov [2007].
We define

Xk := {x ∈ [0, 1]d : 2kL(2h
√
d)β < |η0(x) − 1/2| ≤ 2k+1L(2h

√
d)β} for k = 0, 1, 2, . . .
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Note that if x ∈ Xk,

∣∣∣∣η0(x) − 1
2 − L(2h

√
d)β
∣∣∣∣ ≥ 2kL(2h

√
d)β − L(2h

√
d)β ≥ 2kL(2h

√
d)β/2

for k ≥ 1. Since by (13), we have |ETh(x0)| < cK2d−1 for all x0, we have using Lemma 2
that

E(f̂)

=
∫
g(x0)

{
P(Th(x0) < 0) − 1

(
η0(x0) < 1

2

)}
(2η(x0) − 1)dx0

≤ 4L(2h
√
d)βP(X ∈ X0) + 8L(2h

√
d)βP(X ∈ X1)

+
∞∑
k=2

∫
Xk

g(x0)(2η0(x0) − 1) exp

−(ETh(x0))2hd

Cup

 m∑
j=0

2u2
j

nj ∧ n2
jε

2
jh

d
+ max

0≤j≤m

uj
nj

−1 dx0

≤ 4L(2h
√
d)βP(X ∈ X0) + 8L(2h

√
d)βP(X ∈ X1)

+
∞∑
k=2

∫
Xk

g(x0)(2η0(x0) − 1)dx0×

× exp

− b2
Kc

2
0h

d

22d+5Cup

 m∑
j=0

ujCj
(
2kL(2

√
d)β
)γj

hβγj

2 m∑
j=0

u2
j

nj ∧ n2
jε

2
jh

d
+ max

0≤j≤m

uj
nj

−1 .
(15)

In the rest of the proof we will use the choice of h = hopt,δ where hopt,δ is the solution
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to (4). By definitions of uj we have for h = hopt,δ that

hdopt,δ

 m∑
j=0

ujCj
(
2kL(2

√
d)β
)γj

h
βγj

opt,δ

2
m∑
j=0

u2
j

nj ∧ n2
jε

2
jh

d
opt,δ

+ max
0≤j≤m

uj
nj


−1

= hdopt,δ

 m∑
j=0

Cj(nj ∧ n2
jε

2
jh

d
opt,δ)h

βγj

opt,δ

(
2kL(2

√
d)β
)γj

h
βγj

opt,δ

2

×


m∑
j=0

(nj ∧ n2
jε

2
jh

d)h2βγj

opt,δ


(

1 + max
0≤j≤m

nj ∧ n2
jε

2
jh

d

nj

)−1

≥ min{1, C1, . . . , Cm}2(22k+3L2d)γmin

 m∑
j=0

(nj ∧ n2
jε

2
jh

d
opt,δ)h

βγj

opt,δh
βγj

opt,δ

2

hdopt,δ

×


m∑
j=0

(nj ∧ n2
jε

2
jh

d
opt,δ)h

2βγj

opt,δ


−1

≥ min{1, C1, . . . , Cm}2(22k+3L2d)γmin

 m∑
j=0

(nj ∧ n2
jε

2
jh

d
opt,δ)h

2βγj+d
opt,δ


≥ min{1, C1, . . . , Cm}2(22k+3L2d)γmin log

( 2
δmin

)

where the last two inequalities follow since hopt,δ solves (4). Plugging this lower bound
into (15) we have for h = hopt,δ that

E(f̂) ≤ 8L(2hopt,δ
√
d)βP(|ηQ(X) − 1/2| ≤ 4L(2hopt,δ

√
d)β)

+
∞∑
k=2

(2k+2L(2hopt,δ
√
d)β)P(|ηQ(X) − 1/2| ≤ 2k+1L(2hopt,δ

√
d)β)×

× exp
{

−b2
Kc

2
0 log (2/δmin) min{1, C1, . . . , Cm}2

22d+5Cup
(22k+3L2d)γmin

}
≤ CL(2hopt,δ

√
d)β(2L(2hopt,δ

√
d)β)α

≤ CL1+α
√
d
β(1+α)

h
β(1+α)
opt,δ .

for a numerical constant C > 0. The second inequality uses the margin assumption. To
finish the proof we relate hopt and hopt,δ as follows.

Let us define a function λ0 : [0, 1] → R+ as λ0(r) =
∑m
j=0(nj ∧n2

jε
2
jr
d)r2βγj+d. Then,
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for κ0 = (log(2/δmin))1/(2βγmin+d) we have

λ0(κ0hopt) =
m∑
j=0

(nj ∧ n2
jε

2
j (hoptκ)d)(hoptκ0)2βγj+d

≥
m∑
j=0

(nj ∧ n2
jε

2
jh

d
opt)(hoptκ0)2βγj+d

≥ κ2βγmin+d
0

m∑
j=0

(nj ∧ n2
jε

2
jh

d
opt)h

2βγj+d
opt = κ2βγmin+d

0 = log
( 2
δmin

)
,

where the first equality follows since hopt is the solution to (2). Note that the function
λ0(·) is increasing. By the definition of hopt,δ from (4) this implies the relation hopt,δ ≤
κ0hopt ≤ hopt(log(2/δmin))1/(2βγmin+d). This finishes the proof.

Proof (Proof of Theorem 4.3). The main tool for accomplishing the lower bound
is the Assouad’s Lemma. We construct m+ 1 family of distributions Pj,σ for j = 1, . . . ,m
and Qσ, σ ∈ {−1, 1}M and applying Assouad’s lemma on the family PT̃σ = P T̃ (1)

σ × . . . ×
P T̃ (m)
σ ×QT̃ (0)

σ , where P T̃ (j)
σ denotes the distribution of the T (j) (T (j) is the DP transcript

obtained from nPj samples coming from Pj,σ) and QT (0)
σ is defined similarly.

We borrow the construction of Pj,σ and Qσ from Cai and Wei [2021]. To apply
Assouad’s lemma we look at σ, σ′ ∈ {−1, 1}M that differ at only one element i.e. σk ̸= σ′

k

for some k and σi = σ′
i for all i ̸= k. We bound the total variation distance between Pσ

and Pσ′ and also between Qσ and Qσ′ .

TV (Qσ, Qσ′) = 1
2

∫
µ(x)2 |η0,σ(x) − η0,σ′(x)| dx

≤ 1
2

∫
B(xk,r)

w

λ(B(xk, r))
.2
(1

2(1 + Cβr
β) − 1

2(1 − Cβr
β)
)
dx

= Cβwr
β

Similarly we can show TV (Pj,σ, Pj,σ′) ≤ CγjC
γj

β wr
βγ Next we would bound the KL diver-

gence between Qσ, Qσ′ .

KL(Qσ, Qσ′) = 1
2

∫
µ(x)

[
ηQ,σ(x) log

(
ηQ,σ(x)
ηQ,σ′(x)

)
+ (1 − ηQ,σ(x)) log

(
1 − ηQ,σ(x)
1 − ηQ,σ′(x)

)]
dx

≤ 1
2

∫
B(xk,r)

w

λ(B(xk, r))
Cβr

β log
(

1 + Cβr
β

1 − Cβrβ

)
dx

≤ cC2
βwr

2β

The last line follows if r is chosen such that Cβrβ ≤ 1. Similarly, we can show that
KL(Pj,σ, Pj,σ′) ≤ cC2

γC
2γ
β wr

2βγ . For the sake of brevity we denote P0,σ := Qσ.
We now use Lemma 1. A similar lemma for the federated non-interactive setting can

be found in Cai et al. [2023b].
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Let us define S := {j : εj ≤ (rdnj)−1/2}. Choose w = rd and M =
(1
r

)d−αβ, first we
show that for j ∈ S , ε̄j ≤ cβ,γj := CγjC

γj

β .

ε̄j ≤ njεjρj ≤ njεjCγjC
γj

β r
βγj

Now we upper bound njεjr
βγj .

njεjr
βγj+d = njεjr

βγj+d(∑m
j=0(nj ∧ n2

jε
2
jr
d)r2βγj+d

)1/2

≤ njεjr
βγj+d(

(nj ∧ n2
jε

2
jr
d)r2βγj+d

)1/2

= njεjr
βγj+d(

n2
jε

2
jr
dr2βγj+d

)1/2 = 1,

where we have used the fact that j ∈ S. Hence we have that ε̄j ≤ cβ,γj which implies that
ε̄j(eε̄j − 1) ≤ c′

β,γj
ε̄2
j . Next let us upper bound

∑
j∈S

ε̄j
(
eε̄j − 1

)
+
∑
j∈Sc

njKL(Pj,σ, Pj,σ′) ≤ c′
β,γj

∑
j∈S

ε̄2
j +

∑
j∈Sc

njcC
2
γC

2γ
β r

2βγj+d

≤ c′′
β,γ

∑
j∈S

n2
jε

2
jr

2βγj +
∑
j∈Sc

njr
2βγj+d


= c′′

β,γ

∑
j∈S

n2
jε

2
jr

2βγj ∧ njr
2βγj+d

 = c′′
β,γ

where we have used our choice of r as in (2). We can choose the constants appropriately
such that c′′

β,γ is arbitrarily small. Next lets look at the last term in (6) and observe that

∑
j∈S

eε̄jnjδjρj ≤ ecβ,γj

∑
j

njδj = o(1)

where we have used the fact that ε̄j ≤ cβ,γj and ρj ≤ 1. Hence we have that TV
(
PTσ ,PTσ′

)
≤

1/2 for appropriate choice of the constants. Next in order to apply Assouad’s we need to
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lower bound the risk for neighboring distributions.

RQσ (f̂) +RQσ′ (f̂) =2EX∼QX,σ

(∣∣∣∣ηQ(X) − 1
2

∣∣∣∣1{f̂(X)=f∗
Qσ

(X)
})

+ 2EX∼QX,σ′

∣∣∣∣ηQ(X) − 1
2

∣∣∣∣1{
f̂(X)=f∗

Q∗
σ′

(X)
}

=2
M∑
i=1

∫
B(xi,r)

µ(x) · 1
2Cβr

β ·

1{
f̂(x)=f∗

Qσ
(x)
} + 1{

f̂(x)=f∗
Qσ′

(x)
} dx

≥
∫
B(xk,r)

µ(x) · Cβrβ ·

1{
f̂(x)=f∗

Qσ
(x)
} + 1{

f̂(x)=f∗
Q∗

σ′
(x)
} dx

=Cβwrβ.

Hence by Assouad’s Lemma we obtain that for all distributed DP estimators f̂ ,

inf
f̂

sup
P1,...,Q

EQ(f̂) ≥ M

2 Cβwr
β

(
1 − 1

2

)
= crβ(1+α)

6.3. Proofs of Results in Section 5
Proof (Proof of Theorem 5.1). We break the proof into several steps following

Cai and Wei [2021]. The first step is to derive a concentration bound for T̃ (x, h, w) around
its expectation, uniformly over x ∈ [0, 1]d, h ∈ H, and w ∈ W(h).

Lemma 3.

P
(

sup
x∈[0,1]d,h∈H,w∈W(h)

∣∣∣∣∣ T̃ (x, h, w) − ET̃ (x, h, w)√
v0(h,w)

∣∣∣∣∣ ≥ 3√
2

√
log(2n∗|H|)

)
≤ 2
n∗
.

To allow the probability guarantees to hold uniformly over the adaptation procedure,
we define a new optimal bandwidth similar to (2) and (4). Let hada,0 be the solution to

(n0 ∧(n2
0(ε0/|H|)2rd))r2β+d+

m∑
j=1

(nj∧(n2
j (εj/|H|)2rd))r2βγ+d = 2 log(2n∗|H|) log

(2|H|
δmin

)
.

(16)
Next, let EA,0 be the high probability event described in Lemma 7, we know that

P(EA,0) ≥ 1 − 2n−1
∗ . Next we define

ψ0 := 2Cψ0h
β
ada,0 (17)

for Cψ0 := 2L(2
√
d)β ∨ [2d+3/(c0bK)]1/γmin . We also define

Gψ0 := {x : |ηQ(x) − 1/2| ≥ ψ0}.

Lemma 4. If h ≤ hada,0 and x ∈ Gψ0 , we have that
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i) when f∗(x) = 1,
ET (0)

h (x) ≥ c0bK(ψ0/2)(1/2)d, and ET (j)
h (x) ≥ c0bK(ψ0/2)γ(1/2)d, for j = 1, . . . ,m

ii) when f∗(x) = 0,
ET (0)

h (x) ≤ −c0bK(ψ0/2)(1/2)d, and ET (j)
h (x) ≤ −c0bK(ψ0/2)γ(1/2)d, for j = 1, . . . ,m.

Lemma 5. Under EA,0, if x ∈ Gψ0 and h0 ≤ hada,0, then the output of the algorithm
is correct i.e f̂0(x) = f∗(x).

Lemma 6. For all x ∈ Gψ0 , f̂0(x) = f∗(x) with probability at least 1 − ψ1+α
0 .

Now to complete the proof of Theorem 5.1, let us denote by Eada,0 the event that
f̂0(x) = f∗(x) for all x ∈ Gψ0 . We then have

EEQ(f̂0) = EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(f̂0(X) ̸= f∗(X))
]

≤ EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(f̂0(X) ̸= f∗(X))1(Eada,0)
]

+ P(Ec
ada,0)

≤ EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(X /∈ Gψ0)1(Eada,0)
]

+ P(Ec
ada,0)

≤ ψ0P
(∣∣∣∣η(X) − 1

2

∣∣∣∣ < ψ0

)
+ P(Ec

ada,0)

≤ (C0 + 1)ψ1+α
0

To complete the proof we now relate hada,0 and hopt. Let λ1 : [0, 1] → R+ be a function
defined as

λ1(r) = (n0 ∧ (n2
0(ε0/|H|)2rd))r2β+d +

m∑
j=1

(nj ∧ (n2
j (εj/|H|)2rd))r2βγ+d.

Let us then define

κ1 = (2 log(2n∗|H|) log (2|H|/δmin))1/(2β(1∧γ)+d) ∨ |H|2/d.

Then

λ1(κ1hopt)

= (n0 ∧ (n2
0(ε0/|H|)2(κ1hopt)d))(κ1hopt)2β+d +

m∑
j=1

(nj ∧ (n2
j (εj/|H|)2(κ1hopt)d))(κ1hopt)2βγ+d

≥ κ
2β(1∧γ)+d
1

m∑
j=0

(nj ∧ (n2
j (εj/|H|)2|H|2hdopt))h

2βγj+d
opt

= κ
2β(1∧γ)+d
1 ≥ 2 log(2n∗|H|) log (2|H|/δmin)

where the equality holds since hopt solves (2). Since λ1(·) is increasing, we have hada,0 ≤
κ1hopt, and thus

ψ ≤ 2Cψhβopt((2 log(2n∗|H|) log (2|H|/δmin))
β

2β(1∧γ)+d ∨ |H|
2β
d )

This finishes the proof.
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Proof (Proof of Theorem 5.2). The proof is identical in structure to the proof
of Theorem 5.1.

Lemma 7.

P
(

sup
x∈[0,1]d,h∈H,w∈∆m

∣∣∣∣∣ T̃ (x, h, w) − ET̃ (x, h, w)√
v(h,w)

∣∣∣∣∣ ≥ 3
2

√
(m+ 1) log(n∗|H|(m+ 1))

)
≤ 2
n∗
.

Similar to (16), let hada be the solution to
m∑
j=0

(nj ∧ (n2
j (εj/|H|)2rd))r2βγj+d = (m+ 1)2 log(n∗|H|(m+ 1)) log

(2|H|
δmin

)
. (18)

Let EA be the high probability event described in Lemma 7, we know that P(EA) ≥
1 − 2n−1

∗ . Next we define
ψ := 2Cψhβada (19)

for Cψ := 2L(2
√
d)β ∨ [2d+2Cunif/(c0bK)]1/γmin . As before we will utilize the set

Gψ := {x : |ηQ(x) − 1/2| ≥ ψ}.

Lemma 8. If h ≤ hada and x ∈ Gψ, denoting γ0 = 1, we have that

i) when f∗(x) = 1, ET (j)
h (x) ≥ c0bK(ψ/2)γj (1/2)d, for j = 0, 1, . . . ,m

ii) when f∗(x) = 0, ET (j)
h (x) ≤ −c0bK(ψ/2)γj (1/2)d for j = 0, 1, . . . ,m.

Lemma 9. Under EA, if x ∈ Gψ and h∗ ≤ hada, then the output of the transfer
homogeneous adaptation algorithm is correct i.e f̂0(x) = f∗(x).

Lemma 10. For all x ∈ Gψ, f̂a(x) = f∗(x) with probability at least 1 − ψ1+α.

Now to complete the proof of Theorem 5.2, let us denote by Eada the event that
f̂a(x) = f∗(x) for all x ∈ Gψ. We then have

EEQ(f̂a) = EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(f̂a(X) ̸= f∗(X))
]

≤ EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(f̂a(X) ̸= f∗(X))1(Eada)
]

+ P(Ec
ada)

≤ EX
[∣∣∣∣η(X) − 1

2

∣∣∣∣1(X /∈ Gψ)1(Eada)
]

+ P(Ec
ada)

≤ ψP
(∣∣∣∣η(X) − 1

2

∣∣∣∣ < ψ

)
+ P(Ec

ada)

≤ (C0 + 1)ψ1+α

To complete the proof we now relate hada and hopt. Let λ2 : [0, 1] → R+ be a function
defined as λ2(r) =

∑m
j=0(nj ∧ (n2

j (εj/|H|)2rd))r2βγj+d. Define

κ2 = ((m+ 1)2 log(n∗|H|(m+ 1)) log (2|H|/δmin))1/(2βγmin+d) ∨ |H|2/d.
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Then

λ2(κ2hopt) =
m∑
j=0

(nj ∧ (n2
j (εj/|H|)2(κ1hopt)d))(κ1hopt)2βγj+d

≥ κ2βγmin+d
2

m∑
j=0

(nj ∧ (n2
j (εj/|H|)2|H|2hdopt))h

2βγj+d
opt

= κ2βγmin+d
2 ≥ (m+ 1)2 log(n∗|H|(m+ 1)) log (2|H|/δmin)

where the equality holds since hopt solves (2). Since λ2(·) is increasing, we have hada ≤
κ2hopt, and thus

ψ ≤ 2Cψhβopt(((m+ 1)2 log(n∗|H|(m+ 1)) log (2|H|/δmin))
β

2βγmin+d ∨ |H|
2β
d )

This finishes the proof.

Proof (of Corollary 5.3). The proof follows from Theorem 5.1 by plugging in
the analytical form of the solution r to (2), which can be found from the proof of Theo-
rem 3.1.

7. Proofs of Lemmas

Proof (Proof of Lemma 1). Let us denote the conditional distribution T̃ | T̃ (1) =
t1, T̃

(2) = t2, . . . , T̃
(m) = tm by PT̃ (t)

σ where t = (t1, . . . , tm) and the data is generated
from P0,σ. The notation T̃ (t) denotes the random variable T̃ when we fix the values of
(T (1), . . . , T (m)) = t making the dependence of T̃ on (T (1), . . . , T (m)) explicit.

Now we can obtain as a corollary of Karwa and Vadhan [2017] (by conditioning on
{T̃ (j)}mj=1 throughout) that

D
δ′

0∞(PT̃ (t)
σ ,PT̃ (t)

σ′ ) ≤ eε
′
0 and D

δ′
0∞(PT̃ (t)

σ′ ,PT̃ (t)
σ ) ≤ eε

′
0 ∀ t ∈ T m

where ε′
0 = 6n0ε0TV (P0,σ, P0,σ′) and δ′

0 = eε
′
0n0δ0TV (P0,σ, P0,σ′). We denote for j =

1, . . . ,m, T̃ (j)
σ the random variable T̃ (j) when the underlying data is generated from Pj,σ.

Let us denote the marginal distributions of T̃ (j)
σ by PT̃ (j)

σ . Similarly we can obtain that

D
δ′

j
∞(PT̃ (j)

σ ,PT̃ (j)

σ′ ) ≤ eε
′
j and D

δ′
j

∞(PT̃ (j)

σ′ ,PT̃ (j)

σ ) ≤ eε
′
j for j = 1, . . . ,m

where ε′
j = 6njεjTV (Pj,σ, Pj,σ′) and δ′

j = eε
′
jnjδjTV (Pj,σ, Pj,σ′). We will use the following

lemma.

Lemma 11. Let Y and Z be such that PY ≪ PZ , Dδ
∞(Y ∥Z) ≤ ε and Dδ

∞(Z∥Y ) ≤ ε.
Then, there exists random variables Y ′, Z ′ such that

DTV(Y, Y ′) ≤ δ,DTV(Z,Z ′) ≤ δ and D∞(Y ′∥Z ′) ≤ ε, D∞(Z ′∥Y ′) ≤ ε. (20)
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Using Lemma 11 there exists random variables Ťσ(t) and Ťσ′(t) with corresponding
measures denoted by PŤ (t)

σ and PŤ (t)
σ′ such that

D∞(PŤ (t)
σ ,PŤ (t)

σ′ ) ≤ ε′
0 and D∞(PŤ (t)

σ ,PŤ (t)
σ′ ) ≤ ε′

0 ∀ t ∈ T m

with DTV(PT̃ (t)
κ ,PŤ (t)

κ ) ≤ 2δ′
0 for all t and κ ∈ {σ, σ′}. Similarly, for j = 1, . . . ,m we have

that there exists random variables Ť (j)
σ and Ť (j)

σ′ with corresponding measures denoted by
PŤ (j)
σ and PŤ (j)

σ′ such that

D∞(PŤ (j)

σ ,PŤ (j)

σ′ ) ≤ ε′
j and D∞(PŤ (j)

σ ,PŤ (j)

σ′ ) ≤ ε′
j

with DTV(PT̃ (j)
κ ,PŤ (j)

κ ) ≤ 2δ′
j for all κ ∈ {σ, σ′}.

Now fix a set S ⊆ [m]. Next let us define for j = 1 . . . ,m sT
(j)
σ as Ť (j)

σ if j ∈ S

and T̃
(j)
σ otherwise. Similarly define sTσ(t) as Ťσ(t) if 0 ∈ S and T̃σ(t) otherwise. Next

we define T̃ ′
σ, Ť ′

σ as the marginal distribution of T̃σ(t) , Ťσ(t) respectively where t
d=

sT (1:m) = ( sT
(1)
σ , . . . , sT

(m)
σ ). Also define Ťσ as the marginal distribution of Ťσ(t) where

t
d= T (1:m) = (T̃ (1)

σ , . . . , T
(m)
σ ). Finally we define sTσ as Ť ′

σ if 0 ∈ S and T̃ ′
σ otherwise. By

the triangle inequality,

DTV(PT̃σ ,PT̃σ′) ≤ DTV(P sT
σ ,P

sT
σ′) +DTV(PT̃σ ,P

sT
σ ) +DTV(P sT

σ′ ,PT̃σ′).

Next we bound the second term, consider the case that 0 /∈ S

DTV(PT̃σ ,P
sT
σ ) = DTV(PT̃σ ,PT̃

′

σ )

≤ DTV(PT̃ (1:m)

σ ,P sT (1:m)

σ )

≤
∑
j∈S

DTV(PŤ (j)

σ ,PT̃ (j)

σ ) ≤ 2
∑
j∈S

δ′
j .

where the second inequality follows from the data processing inequality. Now we consider
the case when 0 ∈ S, and in that case

DTV(PT̃σ ,P
sT
σ ) = DTV(PT̃σ ,PŤ

′

σ )

≤ DTV(PT̃σ ,PŤσ ) +DTV(PŤσ ,PŤ
′

σ )

≤ Et∼T (1:m)DTV(PT̃ (t)
σ ,PŤ (t)

σ ) +DTV(PT (1:m)

σ ,P sT (1:m)

σ )

≤
∑
j∈S

DTV(PŤ (j)

σ ,PT̃ (j)

σ ) ≤ 2
∑
j∈S

δ′
j .

where the second inequality follows from triangle inequality. The third inequality is a
consequence of the convexity of the TV distance and data processing inequality. Similarly
we have that DTV(P sT

σ′ ,PT̃σ′) ≤ 2
∑
j∈S δ

′
j .

We now state another lemma.

Lemma 12. If D∞(Y, Z) ≤ ε then DKL(Y, Z) ≤ ε(eε − 1).
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Now we can use Lemma 12 to conclude that DKL(PŤ (t)
σ ,PŤ (t)

σ′ ) ≤ ε′
0(eε′

0 −1). Similarly,
we can show that DKL(PŤ (j)

σ ,PŤ (j)

σ′ ) ≤ ε′
j(eε

′
j − 1). We now tend to the term DTV(PT̄σ ,PT̄σ′).

By Pinsker’s inequality, the independence of the transcripts given the data generating
process and the chain rule for the KL-divergence (we only need to condition for the first
server as that is the only place interaction is happening) using Theorem 5.3.1. from Gray
[2011] we have that

DTV(P sT
σ ,P

sT
σ′)

≤
√

2DKL(P sT
σ ,P

sT
σ′)

≤
√

2DKL(P sT , sT (1:m)
σ ,P sT , sT (1:m)

σ′ )

=

√√√√2
∫
DKL(PT̄ (t)

σ ,PT̄ (t)
σ′ )dPT̃ (1)

σ × . . .× dPT̃ (m)
σ (t) + 2

m∑
j=1

DKL(PT̄ (j)
σ ,PT̄ (j)

σ′ )

If 0 ∈ S then the first term is bounded by ε′
0(eε′

0 − 1) because each term is uniformly
bounded by this very term. And if 0 /∈ S we use data processing inequality to conclude
that DKL(P sT (t)

σ ,P
sT (t)
σ′ ) ≤ DKL(Pσ,Pσ′) = n0DKL(P0,σ, P0,σ′). We can similarly show that

if j ∈ S DKL(PT̄ (j)
σ ,PT̄ (j)

σ′ ) is upper bounded by ε′
j(eε

′
j − 1) and by njDKL(Pj,σ, Pj,σ′) if

j /∈ S. Combining everything we have the lemma that we desired to prove.

Proof (Proof of Lemma 2). For any 1 ≤ i ≤ nj , j = 0, . . . ,m we define

T
(j)
i = 1

hd

(
Y

(j)
i − 1

2

)
K

(
X

(j)
i − x0

h

)

Note that since |Y (j)
i − 1/2| = 1/2 for all i, j, the variance of T (j)

i is bounded as

σ2 = max
i,j

Var(T (j)
i ) ≤ 1

4h2d

(
hd
∫

[−1,1]d
(K(t))2g(x0 + th)dt

)

≤ c2
K

2hd

(∫
[−1,1]d

g(x0 + th)dt
)

≤ c2
K

2hd
(
2dgmax

)
.

Similarly we have the almost sure upper bound

|T (j)
i | ≤ 1

hd

∣∣∣∣Y (j)
i − 1

2

∣∣∣∣max
u∈Rd

K(u) ≤ cK
2hd .

Therefore we can use Bernstein inequality to write:

P

∣∣∣∣∣∣
m∑
j=0

uj
nj

nj∑
i=1

(T (j)
i − ET (j)

i )

∣∣∣∣∣∣ > t

 ≤ exp

−t2hd
c2

K(2d−1gmax)
m∑
j=0

u2
j

nj
+ cKt

2 max
j

uj
3nj

−1
≤ exp

− t2hd

C0

 m∑
j=0

u2
j

nj
+ max

j

uj
3nj

−1 (21)
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for any 0 < t < cK(2d−1gmax), where C0 = ck2d−1. By Gaussian concentration inequalities,
the following bound holds true.

P

∣∣∣∣∣∣
m∑
j=0

uj
√

2cK log(2/δj)
njεjhd

ξ(j)(x0)

∣∣∣∣∣∣ ≥ t

 ≤ exp

− t2

c2
K log(2/δmin)

 m∑
j=0

1
n2
jε

2
jh

2d

−1 .
(22)

Note that

T̃ (x0) :=
m∑
j=0

 uj
njhd

nj∑
i=1

(
Y

(j)
i − 1

2

)
K

(
X

(j)
i − x0

h

)
+
uj
√

2cK log(2/δj)
njεjhd

ξ(j)(x0)


=

m∑
j=0

uj

 1
nj

nj∑
i=1

T
(j)
i +

√
2cK log(2/δj)
njεjhd

ξ(j)(x0)


where ξ(j)(x0) iid∼ N(0, K(0)) for j = 1, . . . ,m. Then, combining (21) and (22) we get

P (|T (x0) − ET (x0)| ≥ t) ≤ exp

− t2hd

Cup


m∑
j=0

u2
j

(
1
nj

+ 1
n2
jε

2
jh

d

)
+ max

0≤j≤m

uj
nj


−1 .

for any t ∈ (0, 1), where Cup = (c2
K ∨ 1)[2d−3gmax + log(2/δmin)/4]. This finishes the proof.

Proof (Proof of Lemma 3). We will first prove that a uniform concentration
bound over x for Th for each fixed h ∈ H, whence a union bound over h will prove the
result. For (a, y, z, w) ∈ [0, 1]d × {0, 1} × [0, 1] × ∆m let us define the class of functions

Fh(a, y, z, w) :=

z
(
y − 1

2

)
K

(
a− x

h

)
−

m∑
j=0

wjEPj

(
Y − 1

2

)
K

(
X − x

h

)
: x ∈ [0, 1]d


Since K(·) is LK-Lipschitz, and |y − 1

2 | = 1
2 for y ∈ {0, 1}, we can follow the proof of

Lemma 14 in Kim et al. [2019], to obtain that the covering number N (Fh, L2, η) satisfies

N (Fh, L2, η) ≤
(

((LK/cK)h−1 + 1)cK
η

)d
for all η ∈ (0, cK) and j ∈ {0, 1 . . . ,m}. (23)

Since |Yi − 1/2| = 1/2 for all i, we have

a := sup
x

1
hd

∣∣∣∣(Y − 1/2)K
(
X − x

h

)∣∣∣∣ ≤ cK
2hd (24)

σ2 := sup
x∈[0,1]d

E
{ 1
h2d (Y − 1/2)2K2

(
X − x

h

)}
= 1

4h2d

∫
K2

(
z − x

h

)
g(z)dz

= 1
4hd

∫
K2(t)g(x+ th)dt ≤ cKgmax

4hd
∫
K(t)dt = cKgmax

4hd . (25)
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Let us define the vector

w†(h) =
(

n1 ∧ n2
1ε

2
1h

d∑m
j=1 nj ∧ n2

jε
2
jh

d
,

n2 ∧ n2
2ε

2
2h

d∑m
j=1 nj ∧ n2

jε
2
jh

d
, . . . ,

nm ∧ n2
mε

2
mh

d∑m
j=1 nj ∧ n2

jε
2
jh

d

)⊤

∈ ∆m−1

so that we can write W(h) = {(w0, (1 − w0)w†(h)) : w0 ∈ [0, 1]}. We define

T
(s)
h (x) =

m∑
j=1

(w†(h))j [T (j)
h (x) − ET (j)

h (x)]

Note that for j ∈ {0, 1, . . . ,m} we have

sup
x∈[0,1]d

|T (s)
h (x)| = 1

hd
sup
f∈Fh

∣∣∣∣∣∣
m∑
j=1

nj∑
i=1

f

(
X

(j)
i , Y

(j)
i ,

(w†(h))j
nj

, w†(h)
)∣∣∣∣∣∣

leading to the upper bound

E sup
x∈[0,1]d

|T (s)
h (x)| ≤ C

√√√√(d+ 1)cKgmax log(8(LK + cK)/√cKgmax)
m∑
j=1

(w†(h))2

njhd
(26)

where we use the bounds from (23) and (25) along with Proposition 2.1 from Giné and
Guillou [2001]. We next define:

Zj = sup
x∈[0,1]d

[T (j)
h (x) − ET (j)

h (x)]

By Talagrand’s concentration inequality, in particular the form given in Theorems 1.1 and
1.2 of Klein and Rio [2005] we obtain:

P (|Zj − EZj | ≥ tj) ≤ exp
[
−1

2 min
{

njt
2
j

σ2 + 2EaZj
,
njtj
3a

}]
for j = 0, . . . ,m.

where a and σ2 are as defined in (24) and (25) respectively. Since a fixed linear combination
of sub-exponential random variables is sub-exponential, it follows that T (s)

h (x) satisfies

P
(∣∣∣∣sup

x
T

(s)
h (x) − E sup

x
T

(s)
h (x)

∣∣∣∣ ≥ t

)

≤ exp

−1
2 min

t2
 m∑
j=1

(w†(h))2
j

nj
(σ2 + 2aEZj)

−1

,
t

3amin{(w†(h))j/nj}


 . (27)

We next bound the Gaussian processes ξ(j)(·). By Dudley’s theorem [see, e.g., De la Pena
and Giné, 2012] we have for a numerical constant C > 0 that

E sup
x∈[0,1]d

ξ(j)(x) ≤ K(0) + C

∫ 1

0

√√√√log
{(

1 + 2
σ

)d}
dσ ≤ C

√
d for j = 0, 1, . . . ,m. (28)
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Moreover, supx E(ξ(j)(x))2 = K(0) ≤ cK for j = 0, . . . ,m. Notice that writing the noise

variance as σ2
j,pvt := 2cK log(2|H|/δj)|H|2

h2d we obtain that

ξ
(s)
h (·) =

m∑
j=1

(w†(h))j
σj,pvt
njεj

ξ(j)(·)

is a mean zero Gaussian process with covariance kernel

Cov(ξ(s)
h (t1), ξ(s)

h (t2)) = K

(
t1 − t2
h

) m∑
j=1

(w†(h))2
j

σ2
j,pvt

n2
jε

2
j

.

By Gaussian concentration inequalities we therefore have that

P
(∣∣∣∣sup

x
ξ

(s)
h (x) − E sup

x
ξ

(s)
h (x)

∣∣∣∣ ≥ t

)
≤ exp

− t2

2


m∑
j=1

(w†(h))2
jσ

2
j,pvt

n2
jε

2
j


−1 . (29)

Combining (27) and (29) we obtain

P
(∣∣∣∣sup

x
(T (s)
h (x) + ξ

(s)
h (x)) − E sup

x
(T (s)
h (x) + ξ

(s)
h (x))

∣∣∣∣ ≥ t

)

≤ exp

−1
2 min

t2
 m∑
j=1

(w†(h))2
j

(
σ2 + 2aEZj

nj
+
σ2
j,pvt

n2
jε

2
j

)−1

,
t

3amin{(w†(h))j/nj}




Now using (26) and (28) it follows after some calculation that

sup
x

|T (s)
h (x) + ξ

(s)
h (x) − ET (s)

h (x)|

≤ C
m∑
j=1

(w†(h))j
(√

(d+ 1)cKgmax log(8(LK + cK)/√cKgmax)
njhd

+ σj,pvt
√
d

njεj

)

+ 3
2

√√√√√log
(2
ν

) m∑
j=1

(w†(h))2
j

(
σ2

nj
+
σ2
j,pvt

n2
jε

2
j

)

≤

√√√√√log
(2
ν

) m∑
j=1

(w†(h))2
j

(
3σ2

nj
+

9σ2
j,pvt

4n2
jε

2
j

) = 3
2

√
v0(h, (0, w†(h))) log

(2
ν

)
(30)

with probability at least 1−ν/2, provided ν ≤ 3n−1
∗ for a sufficiently large constant C > 0.

By an identical calculation one can show that

sup
x

∣∣∣∣∣∣T (0)
h (x) − ET (0)

h (x) +

√
2cK log(2|H|/δj)|H|

n0ε0hd
ξ(0)(x)

∣∣∣∣∣∣
≤ 3

2

√
v0(h, (1, 0, 0, . . . , 0)) log

(2
ν

)
(31)
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with probability at least 1 − ν/2 provided ν ≤ n−1
0 for sufficiently large n0. Note that

T̃ (x, h, w) − ET̃ (x, h, w) is a convex combination of the two quantities on the left hand
side of equations (30) and (31), with weights (1 −w0) and w0 respectively. Moreover, note
that

w0

√
v0(h, (0, w†(h))) + (1 − w0)

√
v0(h, (1, 0, 0, . . . , 0)) ≤

√
2
√
v0(h,w) for all w ∈ W(h).

Therefore, choosing ν = 1
|H|n∗

, we now combine equations (30) and (31) by a union bound

to obtain that, for all w ∈ W(h),

sup
x∈[0,1]d

∣∣∣T̃ (x, h, w) − ET̃ (x, h, w)
∣∣∣ ≥ 3

√
2

2

√
log(2|H|n∗)

√
v0(h,w)

with probability at most 2
|H|n∗

. Finally taking a union bound over all possible h ∈ H

finishes the proof.

Proof (Proof of Lemma 4). Assume f∗(x) = 1, we know that |ηQ(x) − 1/2| ≥
ψ0 because x ∈ Gψ0 . By (17), since h ≤ hada,0 we obtain (L(2h

√
d)β) ≤ ψ0/2. Moreover,

since f∗(x) = 1 we have that ηQ(x) ≥ 1
2 + L(2h

√
d)β, so that we can use arguments

identical to (14) to get

ET (j)
h (x) ≥ bKc0

2d
(
ηQ(x0) − 1

2 − L(2h
√
d)β
)γj

.

Since (L(2h
√
d)β) ≤ ψ0/2, we have that

ET (j)
h (x) ≥ c0bK(ψ0/2)γj (1/2)d,

for j = 0, 1, . . . ,m. The case when f∗(x) = 0 follows similarly.

Proof (Proof of Lemma 5). Since h0 ≤ hada,0 this implies that h0 < ∞ so the
algorithm stops at h0. By the stopping rule we know that:

ρ̂0(h0) ≥ C2
unif log(2n∗|H|) log(2|H|/δmin)

where √
ρ̂0(h0) = max

w∈W(h0)

|T̃ (x, h0, w)|√
v0(h0, w)

.

Let w∗ be one of the values for which the RHS takes its maximum. Then we would have

|T̃ (x, h0, w∗)| > 3√
2

√
log(2n∗|H|)

√
v0(h0, w∗).
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By definition of EA,0 we have that under EA,0:∣∣∣T̃ (x, h0, w∗) − ET̃ (x, h0, w∗)
∣∣∣ ≤ 3√

2

√
log(2n∗|H|)

√
v0(h0, w∗).

Combining the two inequalities we have∣∣∣T̃ (x, h0, w∗) − ET̃ (x, h0, w∗)
∣∣∣ < |T̃ (x, h0, w∗)|,

which implies that

sign
(
T̃ (x, h0, w∗)

)
= sign

(
ET̃ (x, h0, w∗)

)
̸= 0.

Note that since h0 ≤ hada,0, given x ∈ Gψ,0, by Lemma 8 we have when f∗(x) = 1,

ET̃ (x, h0, w∗) ≥ c0bK(ψ0/2)(1/2)d +
m∑
j=1

c0bK(ψ0/2)γ(1/2)d > 0,

and when f∗(x) = 0

ET̃ (x, h0, w∗) ≤ −c0bK(ψ0/2)(1/2)d −
m∑
j=1

c0bK(ψ0/2)γ(1/2)d < 0.

So

sign
(
T̃ (x, h0, w∗)

)
= sign

(
ET̃ (x, h0, w∗)

)
=
{

1 if f∗(x) = 1
−1 if f∗(x) = 0

Hence f̂0(x) = f∗(x).

Proof (Proof of Lemma 6). We will show that under the event EA,0 the algo-
rithm stops at hada,0 if it does not stop earlier.

For all x ∈ Gψ0 ∩ {x : f∗(x) = 1}, we apply Lemma 4 to get that:

ET (0)
hopt,0

(x) ≥ c0bK(ψ0/2)(1/2)d ≥ c0bKCψ0

2d × hβada,0

ET (j)
hopt,0

(x) ≥ c0bK(ψ0/2)γj (1/2)d ≥
c0bKC

γ
ψ0

2d × hβγada,0 for j = 1, . . . ,m. (32)

The rest of the proof can be separated into two cases.

Case 1: (n0 ∧ n2
0ε

2
0h

d
ada,0)h2β+d

ada,0 ≥
∑m
j=1(nj ∧ n2

jε
2
jh

d
ada,0)h2βγ+d

ada,0 .

Case 2: (n0 ∧ n2
0ε

2
0h

d
ada,0)h2β+d

ada,0 <
∑m
j=1(nj ∧ n2

jε
2
jh

d
ada,0)h2βγ+d

ada,0 .



Supplement to “Minimax Transfer Learning under Distributed Differential Privacy” 29

Since the steps are analogous, we write the rest of the proof only for Case 1. This
implies

hβada,0 ≥ 1√
2

1
h
d/2
ada,0

√
2(hada,0)2β+d

≥
√

1
2(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0

√
2(n0 ∧ n2

0(ε0/|H|)2hdada,0)(hada,0)2β+d

≥
√

1
2(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0
×

√√√√ m∑
k=0

(nk ∧ n2
k(εk/|H|)2hdada)h

2βγk+d
ada,0

=

√√√√ log(2n∗|H|) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0
(33)

where in the second last line we write γ0 = 1 and γk = γ for k = 1, . . . ,m; while the last
line follows by (18). Thus for any x ∈ Gψ,0 ∩ {x : f∗(x) = 1} we have by (32) that

ET (0)
hada,0

(x) ≥ 6

√√√√ log(2n∗|H|) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0

where the last step uses (33). Along with the uniform concentration inequality from
Lemma 3 used with w = (1, 0, . . . , 0) and h = hada,0, we have

T
(0)
hada,0

(x) ≥ ET (0)
hada,0

(x) − |T (0)
hada,0

(x) − ET (0)
hada,0

(x)| > 3

√√√√ log(2n∗|H|) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0
.

whenever x ∈ Gψ,0∩{x : f∗(x) = 1}. In the other case, i.e., when x ∈ Gψ,0∩{x : f∗(x) = 0}
we similarly have

T
(0)
hada,0

(x) ≤ ET (0)
hada,0

(x) + |T (0)
hada,0

(x) − ET (0)
hada,0

(x)| < −3

√√√√ log(2n∗|H|) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0
.

Combining the two cases above we obtain

(T (0)
hada,0

(x))2 > 4.5
(

log(2n∗|H|) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada,0)hdada,0

)
.

By definition of ρ̂(·), we have for the choice of weights w(0) = (1, 0 . . . , 0) that

ρ̂0(hada,0) = sup
w∈W(hada,0)

(T̃ (x, hada,0, w))2

v0(hada,0, w) ≥
(T̃ (x, hada, w(0)))2

v0(hada,0, w(0))
=

(T (0)
hada,0

(x))2

v0(hada, w(0))
> 4.5 log(2n∗|H|).

Thus under event EA,0, for all x ∈ Gψ,0, we obtain by the definition of h0 that since r̂(·)
is monotonically increasing, we must have h0(x) ≤ hada,0(x). By Lemma 5, it follows that

f̂0(x) = f∗(x) for all x ∈ Gψ.
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Next note that under case 1 above,

ψ1+α
0 = cψ0h

β(1+α)
ada,0 ≥ c′

ψ,0

(
log(n∗|H|)

n0 ∧ n2
0(ε0/|H|)2hdada,0

)1/2

≥ 2n−1
∗

by definition of n∗. Since by Lemma 7, the event EA,0 holds with probability at least
1 − 2n−1

∗ ≥ 1 − ψ1+α
0 , this finishes the proof.

Proof (Proof of Lemma 7). The proof is very similar to the proof of Lemma 3
and we highlight the important differences. Similar to (26) we can write for 0 ≤ j ≤ m
that

sup
x

|T (j)
h (x) − ET (j)

h (x)|

≤ C

√
(d+ 1)cKgmax log(8LK

√
cK/

√
gmax)

njhd
+ 3

2

√
cKgmax log((ν/(m+ 1))−1)

4njhd

≤
√

3cKgmax log((m+ 1)/ν)
4njhd

with probability at least 1 − ν/(m + 1) for large enough nj , provided ν ≤ n−1
j . Adding

the above bounds we have by the triangle inequality that

P

 sup
x∈[0,1]d,w∈∆m

∣∣∣∣∣∣
m∑
j=0

wjT
(j)
h (x) − E[

m∑
j=0

wjT
(j)
h (x)]

∣∣∣∣∣∣ ≥
m∑
j=0

wj

√
3cKgmax log((m+ 1)/ν)

4njhd

 ≤ ν,

(34)
assuming ν ≤ minj n−1

j . We next bound the Gaussian processes ξ(j)(·). By Dudley’s
theorem [see, e.g., De la Pena and Giné, 2012] we have for a numerical constant C > 0
that

E sup
x∈[0,1]d

ξ(j)(x) ≤ K(0) + C

∫ 1

0

√√√√log
{(

1 + 2
σ

)d}
dσ ≤ C

√
d.

Notice moreover that supx E(ξ(j)(x))2 = K(0) ≤ cK . Thus we have by Gaussian concen-
tration inequalities that

P
(

sup
x∈[0,1]d

|ξ(j)(x)| ≥ 3
2

√
cK log((m+ 1)/ν)

)
≤ ν

m+ 1

which implies for ν ≤ n−1
j and sufficiently large nj that

sup
x∈[0,1]d,w∈∆m

∣∣∣∣∣∣
m∑
j=0

wj

√
2cK log(2|H|/δj)|H|

njεjhd
ξ(j)(x0)

∣∣∣∣∣∣
≤

m∑
j=0

wj

√
4.5c2

K log(2|H|/δj) log((m+ 1)/ν)
nj(εj/|H|)hd (35)
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with probability at most ν. Choosing ν = 1
|H|n∗

we then have

sup
x∈[0,1]d,w∈∆m

∣∣∣T̃ (x, h, w) − ET̃ (x, h, w)
∣∣∣ ≤ 3

2

√
(m+ 1)cK log(|H|n∗(m+ 1))

√
v(h,w)

with probability at most 2
|H|n∗

, where the last line follows by the definition of v(h,w) in

comparison to the right hand sides of (34) and (35). Then taking a union bound over all
possible h ∈ H finishes the proof.

Proof (Proof of Lemma 8). The proof is identical to the proof of Lemma 4 and
hence omitted.

Proof (Proof of Lemma 9). The proof is identical to the proof of Lemma 5 and
hence omitted.

Proof (Proof of Lemma 10). Similar to the proof of Lemma 6, we will show
that under the event EA the algorithm stops at hada if it does not stop earlier.

For all x ∈ Gψ ∩ {x : f∗(x) = 1}, we apply Lemma 8 to get that for any j =
0, 1, . . . ,m,

ET (j)
hopt

(x) ≥ c0bK(ψ/2)γj (1/2)d ≥
c0bKC

γj

ψ

2d × h
βγj

ada. (36)

The rest of the proof can be separated into (m+ 1) cases.

Case j: (nj ∧ n2
jε

2
jh

d
ada)h

2βγj+d
ada = max

{
(nk ∧ n2

kε
2
kh

d
ada)h

2βγk+d
ada : 0 ≤ k ≤ m

}
for j ∈

{0, 1, . . . ,m}.
Since the steps are analogous, we write the rest of the proof only for Case 0. This

implies

hβada ≥ 1√
m+ 1

1
h
d/2
ada

√
(m+ 1)(hada)2β+d

≥
√

1
(m+ 1)(n0 ∧ n2

0(ε0/|H|)2hdada)hdada

√
(m+ 1)(n0 ∧ n2

0(ε0/|H|)2hdada)(hada)2β+d

≥
√

1
(m+ 1)(n0 ∧ n2

0(ε0/|H|)2hdada)hdada
×

√√√√ m∑
k=0

(nk ∧ n2
k(εk/|H|)2hdada)h

2βγk+d
ada

=
√

(m+ 1) log(n∗|H|(m+ 1)) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada)hdada
(37)

where the last line follows by (18). Thus for any x ∈ Gψ ∩{x : f∗(x) = 1} we have by (36)
that

ET (0)
hada

(x) ≥ 4Cunif
√

(m+ 1) log(n∗|H|(m+ 1)) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdopt)hdopt
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where the last step uses (37). Along with the uniform concentration inequality from
Lemma 7 used with w = 0 and h = hada, we have

T
(0)
hada

(x) ≥ ET (0)
hada

(x)−|T (0)
hada

(x)−ET (0)
hada

(x)| > 3
√

(m+ 1) log(n∗|H|(m+ 1)) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada)hdada
.

whenever x ∈ Gψ ∩ {x : f∗(x) = 1}. In the other case, i.e., when x ∈ Gψ ∩ {x : f∗(x) = 0}
we similarly have

T
(0)
hada

(x) ≤ ET (0)
hada

(x) + |T (0)
hada

(x) − ET (0)
hada

(x)|

< − 3
√

(m+ 1) log(n∗|H|(m+ 1)) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada)hdada
.

Combining the two cases above we obtain

(T (0)
hada

(x))2 > 9
(

log(n∗|H|(m+ 1)) log(2|H|/δmin)
(n0 ∧ n2

0(ε0/|H|)2hdada)hdada

)
.

By definition of ρ̂(·), we have for the choice of weights w0 = (1, 0 . . . , 0) that

T̃ (x, hada, w0) = T
(0)
hada

(x) and v(hada, w0) = 1
n0hdada

+ 2 log(2|H|/δmin)
n2

0(ε0/|H|)2h2d
ada

.

and hence

ρ̂(hada) = sup
w∈∆m

(T̃ (x, hada, w))2

v(hada, w) ≥ (T̃ (x, hada, w0))2

v(hada, w0) =
(T (0)
hada

(x))2

v(hada, w0)
> 2.25(m+ 1) log(n∗|H|(m+ 1)).

Thus under event EA, for all x ∈ Gψ, we obtain by the definition of h∗ that since ρ̂(·) is
monotonically increasing, we must have h∗(x) ≤ hada(x). By Lemma 9, it follows that

f̂a(x) = f∗(x) for all x ∈ Gψ.

Next note that under case 0,

ψ1+α = cψh
β(1+α)
ada ≥ c′

ψ

(
log(n∗|H|)

n0 ∧ n2
0(ε0/|H|)2hdada

)1/2

≥ 2n−1
∗

by definition of n∗. Since by Lemma 7, the event EA holds with probability at least
1 − 2n−1

∗ ≥ 1 − ψ1+α, this finishes the proof.

Proof (Proof of Lemma 11). This is earlier stated and proved as Lemma C4 in
Cai et al. [2023b].

Proof (Proof of Lemma 12). This is earlier stated and proved as Lemma C5 in
Cai et al. [2023b].
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