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Abstract

Ranking from pairwise comparisons is a well-studied problem with many appli-
cations such as recommendation systems, education, and social sciences. In these
applications, data privacy often stands as a paramount concern. This paper studies
the problem of ranking a set of items with privacy guarantees based on noisy pairwise
comparison data. We investigate the optimality of differentially private algorithms
for ranking from pairwise comparisons in both parametric and nonparametric set-
tings. Novel differentially private algorithms are proposed, and their minimax rate
optimality is established.

Under parametric assumptions that encompass the Bradley-Terry-Luce model,
we introduce a randomly perturbed maximum likelihood estimator and establish its
optimality. When the parametric model is not assumed, we show that ranking by
noisy counts of wins can recover the true ranks with high probability. Matching lower
bounds are established by an entry-wise version of the score attack technique, as well
as a differentially private Fano’s inequality. Simulation studies and real data analyses
are conducted to demonstrate the numerical performance of our algorithms.

Keywords: Bradley-Terry-Luce model, cost of privacy, minimax rate, score attack.

1 Introduction

As personal data are more extensively collected and analyzed than ever, the importance

of privacy protection in data analysis is also increasingly recognized. In this paper, we

consider privacy-preserving methods for ranking from pairwise comparisons. In this ranking

problem, the data analyst observes random and incomplete pairwise comparisons between
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items following some unknown ranking, with higher ranked items more likely (but not

guaranteed) to prevail over lower ranked ones. The analyst then tries to infer the underlying

ranking from the noisy comparison results. The extensive research on this topic highlights

its relevance in many settings.

• Pairwise comparison in sensitive survey data: Pairwise comparisons in surveys

offer a systematic way for respondents to make choices or rank preferences between

two options, making it a versatile tool for gathering opinions across a wide range

of survey topics. For example, a survey was designed to gauge public sentiments

towards immigration in the U.S., conducted by [49]. The respondents consisted of 98

students who each responded to at least one pairwise comparison. These comparisons

were formulated from a set of four extreme statements about immigrants. The study

aimed to offer insights into diverse views on immigration.

• Pairwise comparison in recommendation systems. Pairwise comparison is used

in recommendation systems that rely on users’ preferences between pairs of items,

such as for rating movies, books, or other consumer items. For instance, [3] proposes

a method in which customers are asked a series of paired preference questions (e.g.,

”Do you prefer item A over B?”).

• Pairwise comparison in education. Pairwise comparison can be used as an ef-

fective tool for educational assessment. For example, [27] describes a study in which

teachers used a pairwise comparison procedure to grade writing scripts and establish a

scale. It found that the teacher judgments were highly consistent within themselves,

and the results were strongly correlated with estimates from a large-scale testing

program for the same students.

Privacy is of concern in many applications of ranking from pairwise comparisons. For

example, in the educational assessment study [27] above, the teachers’ preferences between
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pairs of students assignments should not be publicly known. Similarly, surveys [49] asking

people to express preferences between pairs of political positions suffer from low response

rates, mainly due to respondents’ privacy concerns about their opinions on sensitive issues.

Motivated by the importance of data privacy in these and other applications, we develop

statistically optimal algorithms for ranking from pairwise comparisons under differential

privacy (DP) constraints. DP [21, 20] is the most widely adopted framework for privacy-

preserving data analysis, as DP algorithms enjoy rigorous guarantees that their output

contains little information about any individual in the underlying data set. In this paper,

we propose and analyze DP algorithms for ranking from pairwise comparisons, and show

that our algorithms are statistically optimal under the DP constraint: the resultant rate

of convergence to the true rankings cannot be improved by any other DP algorithm.

1.1 Problem Formulation

We begin with a brief description of the statistical problem under consideration. There

are n distinct items, represented by indices from 1 to n (denoted as [n] = {1, 2, 3, · · · , n}).

Pairwise comparisons between items are observed randomly and independently, where each

pair (i, j), 1 ≤ i < j ≤ n, is compared with a known probability p ∈ (0, 1]. This results

in the generation of a random graph G with n nodes and the observed comparisons con-

stituting the edges. Every observed pair (i, j) determines a unique winner, symbolized by

the outcome Yij ∈ {0, 1}, satisfying Yij + Yji = 1. Consequently, for i < j, the random

variable Yij follows an independent Bernoulli distribution with parameter ρij ∈ [0, 1], and

the requirement Yij + Yji = 1 implies ρij + ρji = 1. We assume ρii = 1/2 for clarity.

Our objective is to rank a set of n items based on the following population quan-

tity: average winning probabilities when compared to randomly selected counterparts.

This average winning probability for each item i ∈ [n] is formally represented as τi =

1
n

∑
j∈[n] ρij. We are interested in estimating the index set Sk, where Sk = {i ∈ [n] :
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τi is among the top-k largest of τ1, τ2, . . . , τn} for a predetermined k ∈ [n].

The ranking problem is studied under two models. The first one is a parametric model

where ρij = F (θ∗i − θ∗j ). Each item i ∈ [n] is assigned a latent parameter θ∗i , and F : R →

[0, 1] is a predetermined link function. This model generalizes well-known the Bradley-

Terry-Luce (BTL) model [7, 33] for pairwise comparison, and recovers the BTL model

when F is the logistic link function. With this parametric assumption, the ranking of τi is

equivalent to the ranking of θ∗i , which further reduces to estimating real-valued parameters

{θ∗i }i∈[n]. The second model is nonparametric, in which we do not assume any parametric

form for the ρij values, and instead aim to estimate the ranks directly. This nonparametric

ranking problem is the focus of a more recent line of work [41, 16, 41, 40]. We define and

study these two settings in Sections 2 and 3 respectively.

Under these models, we study ranking algorithms satisfying (ε, δ) differential privacy

((ε, δ)-DP). (ε, δ)-DP requires that, for an algorithm M taking values in some domain R

and every measurable subset A ⊆ R, we have

P(M(X) ∈ A) ≤ eε · P(M(X ′) ∈ A) + δ

for any pair of data sets X and X ′ which differ by one element. When specialized to our

ranking problem, this privacy definition intuitively implies that, the algorithm’s output

does not change abruptly as the result of modifying a single pairwise comparison outcome,

and the amount of change is controlled by the privacy parameters ε and δ, typically taken to

be small positive constants. This paper’s primary goal is to study how the difficulty of the

ranking problem depends on the privacy parameters, and find optimal ranking algorithms

which satisfy the (ε, δ)-DP constraint.
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1.2 Main Results and Our Contribution

Optimal parametric estimation with differential privacy. Under the parametric

model, we introduce and analyze in Section 2.1 a perturbed maximum likelihood estimator

(MLE) of the form

θ̃ = argmin
θ∈Rn

L(θ; y) + γ

2
∥θ∥22 +w⊤θ, w = (w1, w2, · · · , wn)

i.i.d.∼ Laplace(λ),

where L(θ, y) is the likelihood function, θ is the vector of latent parameters which determine

the items’ ranks, and y is the data set of pairwise comparisons. Section 2.2 shows that,

with a suitable choice of the noise scale λ, the estimator θ̃ is (ε, δ)-DP and is optimal in

both ℓ2 and ℓ∞ losses, via a matching minimax risk lower bound for (ε, δ)-DP estimators.

Optimal nonparametric ranking with differential privacy. Absent parametric as-

sumptions, we find that ranking the items by noisy counts of wins is optimal, in the sense

that it succeeds at ranking the items accurately over the broadest possible regime of sample

size and privacy levels, compared to any other differentially private algorithms.

Let Sk denote the index set of true top k items. We exhibit in Section 3.1 an (ε, δ)-DP

estimator Ŝk satisfying Ŝk = Sk with high probability, as long as the kth ranked and (k+1)th

ranked items are sufficiently separated: let τ(j) denote the average winning probability of

the j-th ranked item against all other opponents, then the separation condition is given by

|τ(k) − τ(k+1)| ≳

√
log n

np
+

log n

npε
. (1.1)

The optimality of this condition is established in Theorem 3.2 via a lower bound argument:

there exists some matrix of winning probabilities ρ violating the threshold (1.1) such that

every (ε, δ)-DP estimator of Ŝk is guaranteed to fail. Moreover, the optimality results are

extended to approximate top-k set recovery under the Hamming distance loss.
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Entry-wise analysis of DP algorithms. The study of differentially private ranking

leads to some discoveries of more general interest. The perturbed MLE achieves differen-

tial privacy by adding a single dose of noise to the objective function, which enables the

“leave-one-out” analysis [17] for entry-wise errors of optimization problems. While exist-

ing research on differentially private optimization predominantly addresses ℓ2 errors, our

approach extends this paradigm to entry-wise error analysis. Our adaptation of the score

attack technique [12] from ℓ2 risk to entry-wise risk may be applicable to entry-wise error

lower bounds of differentially private algorithms in general.

Numerical evaluation and application to real world datasets. We evaluate the

numerical performance of our privacy-preserving ranking algorithms under a variety of

combinations of item count n, sampling probability p, and privacy parameter ε. The

proposed algorithms are also applied to the analysis of two real-world datasets: “University

Preferences” and “Student Attitudes on Immigration.” Our evaluation metrics encompass

parametric estimation and nonparametric ranking, revealing the trade-off between privacy

and utility in both settings.

1.3 Related Work

Some of the most historically significant works on pairwise comparisons and ranking include

[46] which pioneers the use of pairwise comparisons for measuring psychological values, [7]

and [33] which introduce the Bradley-Terry-Luce (BTL) model for pairwise comparisons,

and [25] which first studies the ranking problem via a maximum-likelihood approach.

More recently, there has been a strong interest in minimax rates of convergence for

ranking from pairwise comparisons. Some works, for example [48, 37, 34, 38, 18, 17] as-

sume parametric models, such as the BTL model, for pairwise comparison probabilities,

and study the minimax ℓ2- or ℓ∞- risk of parameter estimation. Another line of work free
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of parametric assumptions focuses on identifying the top ranked items [41, 16] or estimat-

ing the pairwise comparison probabilities under a nonparametric “stochastic transitivity”

assumption [39, 40, 36].

On the trade-off between differential privacy and statistical utility, many differentially

private statistical methods have been proposed and analyzed, including but not limited

to Gaussian mean estimation and linear regression [11], nonparametric density estimation

[47], M-estimators [32], and PCA [24]. Differentially private statistical methods are often

based on paradigms of differentially private algorithm design, such as the Laplace and

Gaussian mechanisms [21, 22] and private convex optimization methods [14, 15, 6, 31, 5].

Specifically on differentially private ranking, existing works [42, 26, 50, 43] are concerned

with the related but different problem of rank aggregation, where the goal is to aggregate

various full rankings of items into a single ranking closest to some ground truth.

The privacy-utility trade-off cannot be fully understood without knowing the minimum

amount of accuracy loss among all private methods. Some powerful tools for lower bounding

the risk of differentially private estimators have been developed, including the tracing

attacks [8, 23, 44, 45, 28, 11] and the score attack [10, 12], as well as differentially private

Le Cam, Fano and Assouad inequalities [4, 29, 13, 1, 2].

1.4 Organization

Section 2 studies differentially private ranking via parameter estimation. Section 3 drops

the parametric assumptions and studies nonparametric estimation of the top k items with

differential privacy. The theoretical findings are supported by numerical experiments on

both simulated and real data in Section 4. Implications of our work and some open problems

are discussed in Section 5. The proofs are given in the Supplementary Materials [9].
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1.5 Notation

For real-valued sequences {an}, {bn}, we write an ≲ bn if an ≤ cbn for some universal

constant c ∈ (0,∞), and an ≳ bn if an ≥ c′bn for some universal constant c′ ∈ (0,∞).

We say an ≍ bn if an ≲ bn and an ≳ bn. c, C, c0, c1, c2, · · · , and so on refer to universal

constants in the paper, with their specific values possibly varying from place to place. For

a positive integer n, let [n] = {1, 2, 3, · · · , n}.

2 Ranking under Parametric Models

We first study ranking from pairwise comparisons under parametric assumptions: each item

i ∈ [n] is associated with a latent parameter θ∗i , and the pairwise probability ρij is related to

the latent parameters of items i, j by a known increasing function F : R → [0, 1], specifically

ρij = F (θ∗i − θ∗j ). These assumptions conveniently reduce the problem of ranking n items

by their average winning probability against peers, τi = n−1
∑

j∈[n] ρij, to the problem of

estimating θ∗ = (θ∗i )i∈[n].

In this paper we propose optimal differentially private algorithms for ranking from

pairwise comparisons. The formal definition of (ε, δ)-DP requires that, for an algorithm M

taking values in some domain R and every measurable subset A ⊆ R,

P(M(X) ∈ A) ≤ eε · P(M(X ′) ∈ A) + δ

for any pair of data sets X and X ′ which differ by one element. A pair of data sets is

called “adjacent” if they differ by exactly one element. For example, if X,X ′ are sets of

real numbers, X = {x1, x2, . . . , xn} ∈ Rn and X ′ = {x′
1, x

′
2, . . . , x

′
n} ∈ Rn, then X and X ′

are adjacent if |X ∩ (X ′)c| = |Xc ∩X ′| = 1.

When specialized to pairwise comparison data, the notion of “adjacency” requires a
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different definition. We say that two sets of comparison outcomes Y = {Yij}(i,j)∈G and

Y ′ = {Y ′
ij}(i,j)∈G′ are adjacent if they satisfy one of the two (disjoint) scenarios.

• The comparison graphs are identical, G = G ′, and there exists exactly one edge

(i∗, j∗) ∈ G on which the comparison outcomes differ, Yi∗j∗ ̸= Y ′
i∗j∗ . All other com-

parison outcomes are identical: Yij = Y ′
ij for (i, j) ̸= (i∗, j∗).

• The comparison graphs G and G ′ differ by exactly one edge: there exist a∗, b∗, c∗, d∗ ∈

[n] and (a∗, b∗) ̸= (c∗, d∗), such that

G = G ∩ G ′ + {(a∗, b∗)},G ′ = G ∩ G ′ + {(c∗, d∗)}.

The comparison outcomes Y = {Yij}(i,j)∈G and Y ′ = {Y ′
ij}(i,j)∈G′ satisfy Yij = Y ′

ij for

all (i, j) ∈ G ∩ G ′.

This notion of adjacency and the corresponding definition of differential privacy is akin

to “edge differential privacy” for graphs [35, 30], which requires that an algorithm taking

graph-valued data as input is not sensitive to the addition or removal of a single edge in

the input graph. We shall construct ranking algorithms that are differentially private in

the aforementioned sense, and study their statistical accuracy.

2.1 Differentially Private Parameter Estimation

For constructing a differentially private estimator of θ∗, our approach is to minimize a

randomly perturbed and ℓ2-penalized version of the negative log-likelihood function. For a

vector v ∈ Rn, indices i, j ∈ [n] and a given link function F , let Fij(v) = F (vi − vj) and

F ′
ij(v) = F ′(vi − vj). The negative log-likelihood function is given by

L(θ; y) =
∑

(i,j)∈G

−yij logFij(θ)− yji log(1− Fij(θ)). (2.1)
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The estimator is defined by Algorithm 1.

Algorithm 1 Differentially Private Ranking for parametric models

Input: Comparison data (yij)(i,j)∈G, comparison graph G, privacy parameter ε, regularity

constants κ1, κ2 defined in (2.3) and (2.4).

1: Set λ ≥ 8κ1

ε
and γ ≥ 4κ2

ε
.

2: Generate w = (w1, w2, · · · , wn)
i.i.d.∼ Laplace(λ).

3: Solve for

θ̃ = argmin
θ∈Rn

L(θ; y) + γ

2
∥θ∥22 +w⊤θ, w = (w1, w2, · · · , wn)

i.i.d.∼ Laplace(λ). (2.2)

Output: θ̃.

Some regularity conditions on the function F will be helpful throughout our analysis of

θ̃. We collect them here for convenience.

(A0) F : R → [0, 1] is strictly increasing and satisfies F (x) = 1− F (−x) for every x ∈ R.

(A1) There is an absolute constant κ1 > 0 such that

sup
x∈R

∣∣∣∣ F ′(x)

F (x)(1− F (x))

∣∣∣∣ = sup
x∈R

F ′(x)

F (x)(1− F (x))
< κ1. (2.3)

(A2) ∂2

∂x2 (− logF (x)) > 0 for every x ∈ R, and there exists an absolute constant κ2 > 0

such that

∂2

∂x2
(− logF (x)) < κ2, min

|x|≤4

∂2

∂x2
(− logF (x)) >

1

κ2

. (2.4)

In particular, choosing F to be the standard logistic CDF satisfies these conditions and

recovers the BTL model.

Returning to the estimator (2.2), the random perturbation w⊤θ is an instance of ob-

jective perturbation methods in differentially private optimization [15, 31]. Let R(θ; y)
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denote the regularized log-likelihood part, R(θ; y) = L(θ; y) + γ
2
∥θ∥22, then θ̃ amounts to

the solution of a noisy stationary condition ∇R(θ̃; y) = −w. The solution θ̃ = θ̃(y) is

differentially private when

• the scale parameter λ of noise vector w is sufficiently large to obfuscate the change

in ∇R(θ̃) over adjacent data sets, and

• the regularization coefficient γ ensures strong convexity of the objective R(θ), so that

perturbation of the gradient is translated to perturbation of the solution θ̃.

The privacy guarantee is formalized by Proposition 2.1.

Proposition 2.1. Suppose conditions (A0), (A1) and (A2) hold. If λ ≥ 8κ1/ε and γ ≥

4κ2/ε, θ̃ as defined in Algorithm 1 is (ε, 0) differentially private.

Proposition 2.1 is proved in [9].

We have so far not considered the convergence of θ̃ to the truth θ∗, and in particular

choosing large values of λ and γ for differential privacy compromises the accuracy of the

estimator θ̃. The optimal choice of λ and γ, which balances privacy and utility, depends on

the loss function. We analyze first the estimator’s ℓ2 rate of convergence in Section 2.1.1,

and then the ℓ∞ rate of convergence in Section 2.1.2.

2.1.1 The ℓ2 Rate of Convergence

Larger values of λ and γ offer stronger privacy guarantees but result in slower convergence

of the estimator. This trade-off in ℓ2 loss is quantified by the next proposition.

Proposition 2.2. If γ = c0
√
np for some absolute constant c0, p ≥ c1 log n/n for some

sufficiently large constant c1, then

E∥θ̂ − θ∥22 ≲
1

p
+

λ2

np2
.
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Proposition 2.2 is proved in [9]. Combining Proposition 2.1, with the utility result,

Proposition 2.2, leads to the ℓ2 rate of convergence of θ̂.

Theorem 2.1. If ε > c0(np)
−1/2 and p ≥ c1 log n/n for some absolute constants c0, c1 > 0

and λ = ε/16, then the estimator θ̂ defined in (2.2) is (ε, 0)-DP and satisfies

E∥θ̂ − θ∥22 ≲
1

p
+

1

np2ε2
. (2.5)

Remark 1. The result we state here holds for pairwise comparisons arising out of general F

satisfying assumption (2.3) and (2.4), we would like to remark that this result in particular

also holds for the BTL model which also satisfies the prescribed assumptions.

Theorem 2.1 is proved in [9]. In the rate of convergence (2.5), the first term 1/p is the

statistical risk without privacy constraint, and the second term is attributable to differential

privacy. It is later shown in Section 2.2 that this rate of convergence is optimal for (ε, δ)-DP

estimators. For now, we move onto the ℓ∞ analysis of the perturbed MLE, to solve the

differentially private ranking problem.

2.1.2 The ℓ∞ Rate of Convergence and Top-k Set Recovery

When γ ≍
√
np log n and F (x) = (1+e−x)−1, the ℓ2-penalized MLE θ̂ = argminθ∈Rn L(θ; y)+

γ
2
∥θ∥22 is shown to be a minimax optimal estimator of θ∗ by [17]. By following a similar path

as the leave-one-out analysis in [17], we can then characterize the entry-wise convergence

of θ̃ in terms of the noise scale λ. As the parametric model ρij = F (θ∗i − θ∗j ) is invariant to

translations of θ∗, we assume without the loss of generality that θ∗ is centered: 1⊤θ∗ = 0.

Proposition 2.3. If γ = c0
√
np log n for some absolute constant c0, p ≥ c1λ log n/n for

some sufficiently large constant c1 > 0, and c2 < λ < c2
√
log n for some sufficiently large
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constant c2 > 0, it holds with probability at least 1−O(n−5) that

∥θ̃ − θ∗∥∞ ≲

√
log n

np
+

λ log n

np
. (2.6)

The proof is given in [9]. Combining the privacy guarantee, Proposition 2.1, with the

rate of convergence, Proposition 2.3 leads to the rate of convergence of our estimator θ̃.

Theorem 2.2. If γ = c0
√
np log n for some absolute constant c0 > 0, p ≥ c1 log n/nε for

some absolute constant c1 > 0, λ = 8κ1/ε, and c2(log n)
−1/2 < ε < 1 for some absolute

constant c2 > 0, then the estimator θ̃ defined in (2.2) is (ε, 0) edge differentially private,

and it holds with probability at least 1−O(n−5) that

∥θ̃ − θ∗∥∞ ≲

√
log n

np
+

log n

npε
. (2.7)

Remark 2. Similar to the ℓ2 error case, it is worth noting that our theorem is applicable

to a broader range of functions F that meet the conditions outlined in assumption (2.3)

and (2.4). Notably, this theorem remains valid for the BTL model as well.

In Theorem 2.2, the assumed conditions ensure Propositions 2.1 and 2.3 are applicable.

The upper bound (2.7) follows from (2.6) in Proposition 2.3 by plugging in λ ≍ 1/ε. The

entry-wise error bound implies that the latent parameters (θ∗i )i∈[n] can be ranked correctly

as long as the true kth and (k + 1)th ranked items are sufficiently separated in their θ

values for all k ∈ [n− 1],

|θ∗(k) − θ∗(k+1)| ≳

√
log n

np
+

log n

npε
. (2.8)

More formally, if S̃k is the index of the top k values of the vector θ̃ then we have the

following result for the recovery of the true top-k set Sk.
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Corollary 2.1. Under conditions of Theorem 2.2, if (2.8) holds for a fixed k, then

P(S̃k ̸= Sk) = O(n−5).

In the separation condition (2.8), the O
(

logn
npε

)
due to the differential privacy constraint

can dominate the O(
√

logn
np

) term, which is optimal in the non-private case, when for

example ε ≍ (log n)−1/2 and p ≪ log2 n
n

. The potentially severe cost of requiring differential

privacy motivates the next section where we study the necessary cost of differential privacy

for entry-wise estimation of θ∗.

2.2 The Cost of Differential Privacy for Estimating Parameters

2.2.1 The Minimax Lower Bound for ℓ2 Risk

In the literature of ranking from pairwise comparisons, it is customary to assume a fixed

range for all latent parameters. We thus consider minimax lower bound over the parameter

space Θ = {θ ∈ Rn : ∥θ∥∞ ≤ 1}. For any (ε, δ)-DP estimator M(Y ) of θ, we establish a

lower bound for the maximum mean squared error over Θ, supθ∈Θ E∥M(Y )− θ∥22.

To this end, we consider the score attack for the pairwise comparison model. Let

{ek}k∈[n] denote the standard basis of Rn; for each (i, j) pair with 1 ≤ i < j ≤ n and any

estimator M(Y ) of θ ∈ Θ, we have the score attack

A(M(Y ), Yij) = 1((i, j) ∈ G)
〈
M(Y )− θ, (Yij − Fij(θ))

F ′
ij(θ)

Fij(θ)(1− Fij(θ))
(ei − ej)

〉
.

When the reference to M and Y is unambiguous, it is convenient to notate Aij :=

A(M(Y ), Yij) and A′
ij := A(M(Y ′

ij), Y
′
ij), where Y ′

ij is an adjacent data of Y obtained by

replacing Yij with an independent copy.

The strategy for establishing a lower bound, as usual, is to analyze
∑

1≤i<j≤n EAij, the
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expected value of score attacks summed over the entire data set.

Proposition 2.4. If M is an (ε, δ)-DP algorithm with 0 < ε < 1 and p > 1/2n, then for

sufficiently large n and every θ ∈ Θ, it holds that

∑
1≤i<j≤n

EY |θAij ≤ 8κ1

√
2n3/2pε ·

√
EY |θ∥M(Y )− θ∥22 + 8κ1n(n− 1)p · δ. (2.9)

After upper bounding
∑

1≤i<j≤n EY |θAij at every θ ∈ Θ, we show that
∑

1≤i<j≤n EY |θAij

is bounded away from zero, albeit in an “average” sense: there exists a prior distribution

π over Θ such that
∑

1≤i<j≤n EθEY |θAij is lower bounded. Specifically, let the density of

each coordinate of θ be π(t) = 1(|t| < 1)(15/16)(1− t2)2, and we have the following result.

Proposition 2.5. Suppose M is an estimator of θ such that supθ∈Θ E∥M(Y )−θ∥22 ≤ c0n

for a sufficiently small constant c0. If each coordinate of θ has density π(t) = 1(|t| <

1)(15/16)(1− t2)2, then there is some constant C > 0 such that

∑
1≤i<j≤n

EθEY |θAij > Cn. (2.10)

We are now ready to state the privacy-constrained minimax lower bound for estimating

θ, by combining the bounds on
∑

1≤i<j≤n EAij in Propositions 2.4 and 2.5.

Theorem 2.3. If npε > 1, 0 < ε < 1 and δ < cn−1 for a sufficiently small constant c > 0,

it holds that

inf
M∈Mε,δ

sup
θ∈Θ

EY |θ∥M(Y )− θ∥22 ≳
1

p
+

1

np2ε2
. (2.11)

2.2.2 The Minimax Lower Bound for ℓ∞ Risk

For an arbitrary (ε, δ)-DP estimator M(Y ) of θ, we would like to find a lower bound for

the maximum ℓ∞ risk supθ∈Θ E∥M(Y ) − θ∥∞ over the parameter space Θ = {θ ∈ Rn :
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∥θ∥∞ ≤ 1}, which captures the inevitable cost of differential privacy for estimating θ.

To this end, we consider an entry-wise version of the score attack method [12]:

A(k)(M(Y ), Yij) =



0 (i, j) ̸∈ G or i, j ̸= k,

(M(Y )k − θk)(ykj − Fkj(θ))
F ′
kj(θ)

Fkj(θ)(1−Fkj(θ))
(i, j) ∈ G and i = k,

(M(Y )k − θk)(yik − Fik(θ))
F ′
ik(θ)

Fik(θ)(1−Fik(θ))
(i, j) ∈ G and j = k.

It is an entry-wise version of the score attack in the sense that summing A(k)(M(Y ), Yij)

over k ∈ [n] is exactly equal to the score attack for lower bounding the ℓ2 minimax risk.

When the reference to Y and M is clear, we denote A(k)(M(Y ), Yij) by A
(k)
ij .

Our plan for lower bounding the ℓ∞ risk consists of upper bounding
∑

1≤i<j≤n EA
(k)
ij by

the ℓ∞ risk and lower bounding the same quantity by a non-negative amount. The results

of these steps are condensed in Propositions 2.6 and 2.7 respectively.

Proposition 2.6. If M is an (ε, δ)-DP estimator with 0 < ε < 1 and p > 6 log n/n, then

for sufficiently large n, every θ ∈ Θ and every k ∈ [n], it holds that

∑
1≤i<j≤n

EY |θA
(k)
ij ≤ 4κ1npε · EY |θ|M(Y )k − θk|+ 4κ1(n− 1)δ + 2κ1n

−1. (2.12)

Proposition 2.6 is proved by considering Ỹij, an adjacent data set of Y obtained by

replacing Yij with an independent copy. By differential privacy of algorithm M , EA(k)
ij

should be close to EA(k)(M(Ỹij), Yij), which is seen to be exactly 0 by the statistical

independence of M(Ỹij) and Yij. The full details can be found in [9].

In the opposing direction, instead of a pointwise lower bound of
∑

1≤i<j≤n EY |θA
(k)
ij at

every θ ∈ Θ, we lower bound the sum over a particular prior distribution of θ over Θ.

Proposition 2.7. Suppose M is an estimator of θ such that supθ∈Θ E∥M(Y )− θ∥∞ < c

for a sufficiently small constant c > 0. If each coordinate of θ has density π(t) = 1(|t| <
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1)(15/16)(1− t2)2, then for every k ∈ [n] there is some constant C > 0 such that

∑
1≤i<j≤n

EθEY |θA
(k)
ij > C. (2.13)

We defer the proof of Proposition 2.7 to [9], and combine Propositions 2.6 and 2.7 to

arrive at a minimax risk lower bound in ℓ∞ norm for estimating θ with differential privacy.

Theorem 2.4. If p > 6 log n/n, ε ≳ (log n)−1, 0 < ε < 1 and δ ≲ n−1, then

inf
M∈Mε,δ

sup
θ∈Θ

EY |θ∥M(Y )− θ∥∞ ≳

√
log n

np
+

1

npε
. (2.14)

The first term in the lower bound (2.14) is exactly the non-private minimax rate proved

in [41, 17]. It remains to prove second term which is attributable to differential privacy.

The lower bound result given in Theorem 2.4 suggests that the perturbed MLE θ̃ is

essentially optimal except possibly a room of improvement by O(log n), but there is no

implication about differentially private ranking algorithms not based on estimating the

latent parameters θ. The next section considers differentially private ranking without

relying on the parametric assumptions.

3 Ranking without Parametric Assumptions

By dropping the parametric assumption ρij = F (θ∗i − θ∗j ), the estimand of interest shifts

from θ∗ to the index set of top-k items Sk for k ∈ [n− 1] in terms of the average winning

probability, τi =
1
n

∑
j∈[n] ρij. In Section 3.1, we exhibit a differentially private estimator

of Sk which exactly recovers Sk when τ(k) and τ(k+1) are sufficiently far apart,

|τ(k) − τ(k+1)| ≳

√
log n

np
+

log n

npε
.
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It is not a coincidence that the requisite separation is identical to its parametric counterpart

(2.8). We prove in Section 3.2 that this separation is the exact threshold for differentially

private ranking in either parametric or nonparametric case.

Formally, consider the space of pairwise probability matrices

Θ(k,m, c) =

{
ρ ∈ [0, 1]n×n : ρ+ ρ⊤ = 11⊤, τ(k−m) − τ(k+m+1) ≥ c

(√
log n

np
+

log n

npε

)}
,

for k ∈ [n − 1] and 0 ≤ m ≤ min(k − 1, n − k − 1). Let dH(·, ·) denote the Hamming

distance between sets, and an estimator Ŝk succeeds at recovering Sk within tolerance m if

sup
ρ∈Θ(k,m,c)

P
(
dH(Ŝk,Sk) > 2m

)
= o(1).

Exact recovery of Sk corresponds to m = 0. By adopting a similar framework to that of

[41], we can directly compare the requisite threshold for top-k ranking with or without

differential privacy.

3.1 Recovering the Set of Top-k items

[41] shows that the Copeland counting algorithm, which simply ranks the n items by their

number of wins, exactly recovers the top-k items when the τ values of the true kth and

(k+1)th items are separated by at least O
(√

logn
np

)
. Algorithm 2 considers a differentially

private version where the items are ranked by noisy numbers of wins.

The estimator S̃k defined in Algorithm 2 is (ε, 0)-DP by the Laplace mechanism [21]:

the vector (N1, N2, · · · , Nn) has ℓ1-sensitivity bounded by 2 over edge adjacent data sets,

and the set S̃k is differentially private because it post-processes {Nj +Wj}j∈[n].

S̃k recovers Sk within tolerance m as long as τ(k−m), τ(k+m+1) are sufficiently separated.
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Algorithm 2 Differentially Private Ranking for nonparametric models

Input: Comparison data (yij)(i,j)∈G, comparison graph G, privacy parameter ε.

1: Set Ni =
∑

j ̸=i,(i,j)∈G 1(Yij = 1) denote the number of comparisons won by item i.
2: Generate

W = (W1,W2, · · · ,Wn)
i.i.d.∼ Laplace

(
2

ε

)
.

3: Compute the top-k set

S̃k = {i ∈ [n] : Ni +Wi is among the top k largest of {Nj +Wj}j∈[n]}.

Output: S̃k.

Theorem 3.1. For every k ∈ [n− 1] and any sufficiently large constant C > 0,

sup
ρ∈Θ(k,m,C)

P
(
dH(S̃k,Sk) > 2m

)
< O(n−5). (3.1)

The theorem is proved in [9]. Specializing the theorem to m = 0 leads to the threshold

for exact recovery.

Corollary 3.1. For every k ∈ [n− 1], if the matrix of pairwise probabilities ρ is such that

|τ(k) − τ(k+1)| ≥ C

(√
log n

np
+

log n

npε

)

for a sufficiently large constant C > 0, we have Pρ

(
S̃k ̸= Sk

)
< O(n−5).

As a further consequence, if |τ(k) − τ(k+1)| ≥ C
(√

logn
np

+ logn
npε

)
for every k, then the

union bound implies all n items can be correctly ranked with probability at least 1 −

O(n−4). The next section shows this threshold is optimal in the sense that no differentially

private algorithm can succeed at recovering Sk when |τ(k) − τ(k+1)| < c
(√

logn
np

+ logn
npε

)
for

a sufficiently small constant c.
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3.2 The Fundamental Limit of Differentially Private Ranking

To establish the tightness of the threshold
√

logn
np

+ logn
npε

for differentially private ranking,

we shall prove that the supremum of Pρ

(
dH(S̃k,Sk) > 2m

)
over the set of matrices

Θ(k,m, c) =

{
ρ ∈ [0, 1]n×n : ρ+ ρ⊤ = 11⊤, τ(k−m) − τ(k+m+1) ≥ c

(√
log n

np
+

log n

npε

)}
,

is bounded away from 0 for sufficiently small c. In view of the lower bound, Theorem 2(b),

in [41] where the supremum is taken over

Θ0(k,m, c) :=

{
ρ ∈ [0, 1]n×n : ρ+ ρ⊤ = 11⊤, τ(k−m) − τ(k+m+1) ≥ c

√
log n

np

}
,

it suffices to show that the supremum of Pρ

(
dH(S̃k,Sk) > 2m

)
over the set

Θ̃(k,m, 2c) =

{
ρ ∈ [0, 1]n×n : ρ+ ρ⊤ = 11⊤, τ(k−m) − τ(k+m+1) ≥ 2c

log n

npε

}

is bounded away from 0, because Θ(k,m, c) ⊆ Θ0(k,m, 2c) ∪ Θ̃(k,m, 2c) for c > 0.

For proving the lower bound over Θ̃(k,m, 2c), the differentially private Fano’s inequality

[4, 2] reduces the argument to choosing a number of different ρ’s in Θ̃(k,m, 2c) such that

the distance among the distributions induced by the chosen ρ’s is sufficiently small. We

defer the details to the Supplementary Materials [9] and state the lower bound result below.

Theorem 3.2. Suppose the tolerance m is bounded by 2m ≤ (1+ν2)
−1min{n1−ν1 , k, n−k},

logn
npε

< c0, and δ < c0 (m log n · n10m/ε)
−1

for a sufficiently small constant c0. There is a

small constant c(ν1, ν2) such that every (ε, δ)-DP estimator Ŝk satisfies

sup
ρ∈Θ̃(k,m,c)

Pρ

(
dH(Ŝk,Sk) > 2m

)
≥ 1

10
(3.2)
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whenever c < c(ν1, ν2) and n is sufficiently large. The inequality remains true if ρ =

(ρij)i,j∈[n] is additionally restricted to the parametric model ρij = F (θ∗i − θ∗j ), as long as F

satisfies regularity condition (A0) in Section 2.1.

In conjunction with Theorem 3.1, Theorem 3.2 yields that S̃k is an optimal (ε, δ)-DP

estimator. Setting m = 0 in Theorem 3.2 gives the lower bound for exactly recovering the

top k items Sk. In the exact recovery case, the threshold for full ranking of n items is when

|τ(k) − τ(k+1)| ≥ C
(√

logn
np

+ logn
npε

)
for every k.

Because the lower bound continues to hold when restricted to the parametric model, it

in fact settles the O(log n) gap between the parametric upper bound Theorem 2.2 and the

parametric lower bound Theorem 2.4. If ωij = F (θ∗i − θ∗j ) for some F satisfying regularity

conditions (A0) and (A1) in Section 2.1 and θ∗ ∈ Θ, we have |τ(k)− τ(k+1)| ≍ |θ∗(k)− θ∗(k+1)|.

The existence of an (ε, δ)-DP estimator with a faster rate of convergence than θ̃ would

contradict the lower bound above for recovering Sk. Under the parametric assumptions,

the perturbed MLE θ̃ is minimax optimal for estimating the latent parameters θ∗.

4 Numerical Experiments

The proposed privacy-preserving ranking algorithms are easy to implement. We assess in

this section the numerical performance of our algorithms in various regimes of number of

items n, the sampling probability p, and the privacy parameter ε. We begin with simulated

data in Section 4.1, and consider in Section 4.2 two real data sets, a student preference

data set from [19] and an immigration attitude data set from [49].
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4.1 Simulated studies

Data Generation The pairwise comparison outcomes are sampled from the BTL model.

We fix the value of k = n/4 and generate our θi by

eθi ∼


Unif(0.2, 0.7) if i < k,

1 if i ≥ k.

Evaluation Metric for Parameter Estimation: For evaluating the performance of

our parametric estimation algorithms, we consider the ℓ∞ and ℓ2 relative errors. For visu-

alization purposes we plot the relative errors defined as follows:
(

∥θ̂−θ∗∥∞
∥θ∗∥∞

)
,
(

∥θ̂−θ∗∥2
∥θ∗∥2

)
on

the logarithmic scale, where θ̂ is the estimator and θ∗ is the true parameter value.

Evaluation Metric for Top-k set recovery: Under both the parametric and nonpara-

metric models, we evaluate the performance of top-k recovery by the size of overlap between

the estimator and the truth, |Ŝk∩Sk|
k

, where Sk is the true top-k set and Ŝk is an estimator.

4.1.1 Experiments

Experiment 1: We study the number of items n’s effect on the accuracy of our estimator

(Figure 1). The sampling probability p is fixed at 1, and we consider four privacy levels ε ∈

{0.5, 1, 2.5,∞}. All loss functions decrease as n increases, demonstrating the consistency

of our suggested approaches.

It is noteworthy that, for top-k set recovery, the nonparametric Copeland algorithm

outperforms the penalized-MLE in both the private and non-private regimes.
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Figure 1: Estimation errors versus the sample size n at various privacy levels for the
university preference dataset.

Experiment 2: We investigate the effect of changing edge probability p on the accuracy

of the proposed methods (Figure 2). The sample size is fixed at n = 300, and ε varies across

four different levels {0.5, 1, 2.5,∞}. As p increases, we observe more pairwise comparisons,

effectively increasing the sample size and leading to better performance.

Experiment 3: Here we investigate the effect of privacy parameter ε on the accuracy of

our methods (Figure 3). The sample size is fixed at n = 300, and the sampling probability

p varies acorss four levels {0.25, 0.5, 0.75, 1}. Increasing ε (decreasing privacy) improves

the accuracy.
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Figure 2: Estimation errors versus the sampling probability p at various privacy levels.

4.2 Real Data Analysis

In this section, we delve into the methodology used to evaluate the impact of differential

privacy on the two distinct datasets: ”University Preferences” and ”Student Attitudes on

Immigration.” Our primary focus is to assess the loss of statistical accuracy resulting from

privacy constraints, with a keen interest in how this loss varies with changing proportions

of observed data (p) and privacy parameters (ε). We employ a set of evaluation metrics,

including parametric estimation and nonparametric ranking, to gauge the effectiveness of

differential privacy techniques in balancing utility and privacy in real-world applications.

4.2.1 Data Sets

University Preferences The university preference data set [19] is collected in a survey

conducted among students in the “Community of European Management Schools” (CEMS)

program by the Vienna University of Economics. The data set consists of observations
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Figure 3: Estimation errors versus the privacy parameter ε at various sampling probabili-
ties.

from 303 students and records their preference between pairs of European universities

for their semester abroad. For each student, a total of 15 pairwise comparisons between

universities were asked for, and then an overall ranking of all universities was derived using

the comparison outcomes. While this dataset provides valuable insights on the relative

merits and attractiveness of universities, it also contains inherently personal and sensitive

information, and therefore differentially private methods are relevant.

Student Attitudes on Immigration This dataset is collected in a survey conducted

by [49] to understand public opinions on immigration. The survey collected responses from

98 students, each agreed to answer at least one paired comparison drawn from a pool

of four extreme statements about immigrants. The sensitivity of this dataset lies in the

controversial nature of the statements being compared, as well as potential ramifications

for both the respondents and the foreign individuals they might be interacting with.
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4.2.2 Method

As no true ranking exists in these experiments, we focus on the loss of statistical accuracy

attributable to differential privacy constraints, measured by the distance between private

and non-private estimators. We study how this distance changes as a function of two quan-

tities: p, the proportion of observed pairwise comparisons, and ε, the privacy parameter.

In particular, to study the effect of varying p, we subsample the full data sets by different

p values before applying the algorithms.

The evaluation metrics are similar to the simulated data case. For parametric esti-

mation, we denote by θ̂P and θ̂NP the private and non-private estimators respectively and

consider the ℓ2 and ℓ∞ distances, ∥θ̂P − θ̂NP∥2 and ∥θ̂P − θ̂NP∥∞. For nonparametric rank-

ing, we use R̂P and R̂NP to denote the private and non-private rankings and consider the

normalized Hamming loss dHam(R̂P, R̂NP)/n, where n is the number of items.

Remark 3. Both these datasets had presence of ties which were resolved by adding half

of the number of no preferences to each item. We had multiple pairwise comparisons for a

given pair of items unlike described in the main body of paper which was dealt with using

a simple modification of our proposed method.

4.2.3 Results

In both data sets, all three metrics, ℓ2 loss, ℓ∞ losses, and the Hamming distance, increase as

p or ε decreases. The same is true for the Hamming distance as well. It is encouraging that,

for moderate to large values of p, the distance between private and non-private estimators

are small even at high privacy levels, say ε ≤ 1. Such results provide confidence that utility

and privacy can be balanced in practical applications of our algorithms.
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Figure 4: Estimation errors versus the sampling probability p at various privacy levels for
the university dataset.
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Figure 5: Estimation errors versus the privacy parameter ε at various sampling probability
levels for the university dataset.
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Figure 6: Estimation errors versus the sampling probability p at various privacy levels for
the immigration dataset.
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Figure 7: Estimation errors versus the privacy parameter ε at various sampling probability
levels for the immigration dataset.
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5 Discussion

In this paper, we proposed differentially private algorithms for ranking and analyzed their

rates of convergence, and we proved their optimality among all differentially private ranking

algorithms. The results show that the minimum cost of (ε, δ)-DP in ranking from pairwise

comparisons is O
(

logn
npε

)
. If the separation between the k-th and (k + 1)-th items’ average

winning probability is of any lower order, then no (ε, δ)-DP algorithm will succeed. How-

ever, if the separation is larger than the threshold, the (ε, δ)-DP algorithms we proposed

in this paper will correctly rank the items with overwhelming probability.

Under the parametric model, a single dose of noise added to the objective function sim-

plifies the privacy analysis, and avoids potentially higher privacy cost incurred by iterative

noise addition required by methods such as noisy gradient descent. The entry-wise error

analysis of the perturbed MLE is potentially applicable in other statistical problems where

entry-wise or ℓ∞ errors are of primary interest. On the lower bound side, the entry-wise

version of score attack in Section 2.2 results in a O(log n) gap from the optimal lower bound

in Section 3.2. One would wonder if this method can be further strengthened to eliminate

such gaps.

Interestingly, the optimal (ε, δ)-DP ranking algorithms actually satisfy the stronger

(ε, 0)-DP. This implies that the cost of “pure” differential privacy is not higher than that

of “approximate” differential privacy in this ranking problem. This phenomenon stands in

contrast with differentially private (Gaussian) mean estimation in high dimensions [4, 44,

11], where the optimal rate of convergence with (ε, δ)-DP explicitly depends on δ. It is

an interesting theoretical question to understand the conditions under which approximate

(ε, δ)-DP is strictly less costly to statistical accuracy than pure (ε, 0)-DP.
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